BACKGROUND - Up to 70% of clinic visits for shoulder pain are due to rotator cuff injury. - Arthroscopic rotator cuff repair (RCR) is the gold standard for surgical fixation of these injuries and is one of the most common ambulatory surgeries in the field of orthopedics. - Candidacy for and recovery potential after arthroscopic RCR involves considerations of patient specific factors, tear pathology, and repair and rehab techniques. - While literature outlining these considerations individually is abundant, very few studies aggregate this information for easy reference. - Most literature is written at levels above the average reading level of most patients. - Low patient expectations lead to worse outcomes following arthroscopic RCR. #### **PURPOSE** - 1. Highlight current concepts on operative considerations of arthroscopic RCR - 2. Create reference to help shape expectations for patients receiving arthroscopic RCR #### **METHODS** Two independent PubMed database searches identified 1964 articles. 128 met all criteria. #### **SEARCH TERMS** - Arthroscopic rotator cuff repair - Suture technique rotator cuff - Acromioplasty - Rotator cuff repair physical therapy - Rotator cuff tear revision - Reverse shoulder arthroplasty # INCLUSION CRITERIA - Peer reviewed - Adult population ## EXCLUSION CRITERIA - Case studies - Nonarthroscopic techniques #### REFERENCES 1. Bjornsson HC, Norlin R, Johansson K, Adolfsson LE. The influence of age, delay of repair, and tendon involvement in acute rotator cuff tears: structural and clinical outcomes after repair of 42 shoulders. *Acta Orthop* 82: 187-192, 2011. 2. Cole BJ, Cotter EJ, Wang KC, Davey A. Patient Understanding, Expectations, and Satisfaction Regarding Rotator Cuff Injuries and Surgical Management. *Arthroscopy* 33: 1603-1606, 2017. 3. Eltorai AE, Sharma P, Wang J, Daniels AH. Most American Academy of Orthopaedic Surgeons' online patient education material exceeds average patient reading level. *Clin Orthop Relat Res* 473: 1181-1186, 2015. 4. Gwark JY, Sung CM, Na JB, Park HB. Outcomes of Arthroscopic Rotator Cuff Repair in Patients Who Are 70 Years of Age or Older Versus Under 70 Years of Age: A Sex- and Tear Size-Matched Case-Control Study. *Arthroscopy* 34: 2045-2053, 2018. 5. Pihl K, Roos EM, Nissen N, JøRgensen U, Schjerning J, Thorlund JB. Over-optimistic patient expectations of recovery and leisure activities after arthroscopic meniscus surgery. *Acta Orthop* 87: 615-621, 2016. 6. Piper CC, Hughes AJ, Ma Y, Wang H, Neviaser AS. Operative versus nonoperative treatment for the management of full-thickness rotator cuff tears: a systematic review and meta-analysis. *J Shoulder Elbow Surg* 27: 572-576, 2018. # DOCTOR, WHAT HAPPENS AFTER MY ARTHROSCOPIC ROTATOR CUFF REPAIR? <u>Author:</u> Bailey Corson | <u>Faculty Mentor</u>: Rachel Frank, MD | <u>Contributors:</u> D. Houck; R. Jahn, MD; E. McCarty, MD; J. Bravman, MD; M. Wolcott, MD | RESULIS . | | | | | | | |--|---|--|--|---|---|--| | Non-Modifiable Patient-Specific Factors Affecting Outcomes | | | Modifiable Patient-Specific Factors Affecting Outcomes | | | | | Patient Factor | Outcomes
Assessed | Comments | Patient Factor | Outcomes
Assessed | Comments | | | Age | Repair Integrity
(MRI, US), ROM
assessment,
VAS pain score | Increasing age leads to higher incidence of rotator cuff tears and decreased healing rates. Clinical and functional outcomes may not differ with age. Few Data compare young adult and senior populations. | Post-operative
management | CMS, PSQI, ROM assessment, WORC | Short terms functional outcomes do not differ between the use of immobilization and early ROM, Early ROM may lead to improved long-term ROM with a higher risk of retear. | | | Sex | CMS, ROM assessment, SST, VAS pain score | Women have higher short-term pain and worse function while
men are more likely to experience short-term complications. | Obesity | DASH score, SST,
VAS pain score | Early functional improvement leads to higher sleep quality. Obese patients do not have significantly different patient reported outcomes despite having longer operative times (108 vs. 87 minutes) and longer hospital stay times (18 vs. 9 hours). | | | Tear Pathology | CMS, Repair integrity (MRI, US) | Increasing tear size leads to decreased healing at 1 year postoperatively. Number of torn tendons negatively correlates with short-term but not long-term outcomes. | Smoking | ASES score, Repair integrity (MRI), SST, VAS pain score, WORC | Smokers present with larger mean tear sizes, have worse initial
outcome scores, earlier plateaus in improvement, and higher
rates of failed RCR than non-smokers. | | | Preinjury
Tendon Health | CMS, Repair
Integrity (MRI,
CTA) | • Fatty degeneration leads to worse outcomes and risk of | Timing of repair | | Delaying traumatic tear repair up to 3 months has no difference
on outcomes, however, improved function following arthroscopic
RCR is seen if performed within 6 months of the injury. | | | Diahetes | ASES score, CMS, Comorbidity | postoperative progression of fatty degeneration. Diabetic patients have a higher incidence of rotator cuff tears (41 vs 26 per 100,000) and less improvement in pain and functional scores than non-diabetic patients. It is important to note that type 2 diabetes can be considered both | operative
opioid use
ASES = American | | improvement following surgery but not to the same extent as in opioid-naïve patients. w Surgeons Score, CMS, MRI = Magnetic resonance imaging, OSS = | | ASES = American Shoulder and Elbow Surgeons Score, CMS = Constant Murley Score, CTA = Commuted tomography Angiography, MRI = Magnetic resonance imaging, ROM = Range of Motion, SST = Simple Shoulder Test, VAS = Visual Analog Scale, US = Ultrasound. and environmental etiologic components. HR, ROM SST, VAS, assessment, a modifiable and non-modifiable risk factor due to known genetic | | Factors Predictive of Re-Tear Following Arthroscopic RCR | | | | | |---|---|--|--|--|--| | Factor | Comments | | | | | | AHI | Smaller AHI indicates higher retear rates (MRI) (AHI: 6.8mm vs. 8.7mm [P < 0.01]) | | | | | | Age | Inreased intact rotator cuffs seen postoperetively in younger patients | | | | | | CSA | Higher CSA correlates to higher retear rates (CSA: 34.2 vs 38.6 degrees [P < 0.01]) | | | | | | Diabetes | Animal models suggest delayed tendon-to-bone healing in Diabetic pateints. | | | | | | Fatty degeneration | Higher mean GFDI correlates with higher risk of retear (1.2 vs 0.6; [P < 0.01]) | | | | | | Mean tear size | Larger mean tear area was found in patients experiencing retear as compared to those who did not following primary RCR ($7.5 \text{cm}^2 \text{vs} 2.7 \text{cm}^2$; [P < 0.01]) | | | | | | Osteoporosis | Lower BMD leads to higher failure rates (%) graded by osteopenia (30.2%; [OR = 4.38]) and osteoporosis (41.7%; [OR = 7.25]) | | | | | | Postoperative stiffness | No statistically predictive relationship, postoperative stiffness and retear risk. | | | | | | Preopereative ROM | Preoperative external rotation < 25 degrees [P < 0.01] is predictive of retear | | | | | | Primary repair techniques | Specific primary repair techniques have been shown to influence retear rates. Details are beyod the scope of this review. | | | | | | Smoking | Nicotine increases tendon-to-bone healing time | | | | | | Supraspinatus tendon lengthening | Increased Tendon lengthening following surgery predictive of lower retear in patients with higher grades of fatty degeneration. | | | | | | AHI = Acromiohumeria Interval, CSA = Critical shoulder angle, GFDI = Global fatty degeneration Index, | | | | | | #### Postoperative Considerations Shoulder Test, SSV = Subjective Shoulder Value, VAS = Visual Analog Scale, WORC = Western Ontario Use of Nerve Blockade vs. • Short term: decreased pain and increased patient satisfaction. Long term: no difference in outcomes. • Lead to faster recovery and improved final ROM. • No difference in long term patient reported outcomes. #### Intraoperative considerations Single row (SR) vs. double row (DR) • 1 Partial vs. Complete Repair General Anesthesia Early Physical Therapy Use of Acromioplasty **Rotator Cuff Index** - Tendon-bone healing: DR > SR Patient reported outcomes: DR = SR - Consider partial repair if >25-75% torn - Outcomes do not differ in partial repair vs. conversion to full repair - No differences in clinical outcomes, retear rates with vs. without ## Significant Mean Rates of Return to Sport Mean Rate of Return to Sport (%) Returning to work and ADLs - For senior citizen population compete return to ADLs occurs in average of 14 months. - This can be prolonged with increasing age, higher pre-injury level of function. - Up to 97% of people return to work following arthroscopic RCR. - Average time is ~5 months. - Factors prolonging this include: - Increasing age, high shoulder function, requirement, workers comp claims. - Hand dominance: no effect on time to return to ADLS, negative influence on time and rates of return to work. ## CONCLUSIONS • Properly shaping expectations for recovery potential following arthroscopic RCR can improve patient satisfaction. **ROM** = Range of motion, BMD = Bone mineral density - Though many risk factors for delayed improvement following arthroscopic RCR are inherent, many are modifiable. - Understanding risks of reinjury can help guide the postoperative process. - The majority of patients will return to ADLs, work and sport, though the extent and timing varies bask on patient risk factors.