
Targeted therapy for pediatric low-grade gliomas and plexiform neurofibromas with trametinib

Tiffany Mai Nguyen; Kathleen McMahon, RN; Molly Hemenway, NP, PNP, MS; Shelby Winzent, PA-C; Nicholas Foreman, MD; Kathleen Dorris, MD

Introduction

Activation of the mitogen activated protein kinase (MAPK) pathway through the BRAF oncogene and/or loss of tumor suppressor NF1 contributes to the tumorigenesis of pediatric low-grade gliomas (LGG) and neurofibromatosis type 1-associated plexiform neurofibromas (PN).

By inhibiting the MAPK pathway with the MEK1/2 inhibitor, trametinib, we aimed to study tumor responses, adverse effects, and opportunities to augment standard of therapy.

Materials and methods

Retrospective, IRB-approved (COMIRB #18-1383) chart review was performed at Children's Hospital Colorado (2015 - 2020) to identify patients ≤ 18 yo with LGG and/or PN treated with trametinib. Demographics, tumor molecular changes, NF1 status, best response to trametinib, therapy duration, reason to discontinue, and possible toxicities attributed to trametinib were collected.

Results

Table 1: Patient characteristics				
# of pts, n (%)	30 (100%)			
Age at initiation of trametinib				
Median	9.6 y			
Range	2.0 – 18.8 y			
Tumor type, n (%)				
LGG	13 (43%)			
PN	15 (50%)			
Both	2 (7%)			
BRAF or NF1 LGG molecular				
mutations, n (%)				
Yes	8 (53.3%)			
No	5 (33.3%)			
Unknown	2 (13.3%)			

Table 2: Treatment Outcomes				
Duration of therapy				
Median	2.0 y			
Range	0.7 – 3.6 y			
Best LGG response				
Stable Disease (SD)	8 (53%)			
Partial Response (PR)	7 (47%)			
Best PN response				
Stable Disease (SD)	11 (65%)			
Partial Response (imaging or clinical)	6 (35%)			
Reason to discontinue				
Completed	13 (43%)			
On therapy at censor	11 (37%)			
Toxicity	3 (10%)			
Progression	2 (7%)			
Lost to follow-up	1 (3%)			

Table 3: Common toxicities				
	All	LGG	PN	
	(n = 30)	(n = 14)	(n = 16)	
Diarrhea	5 (17%)	4 (29%)	1 (6%)	
Paronychia	15 (50%)	8 (57%)	7 (44%)	
Rash	27 (90%)	11 (79%)	16 (100%)	
Mucositis	1 (3%)	0 (0%)	1 (6%)	
Pericardial effusion	1 (3%)	0 (0%)	1 (6%)	
Wound breakdown	1 (3%)	0 (0%)	1 (6%)	

Conclusions

Most patients maintained at least stable disease with trametinib treatment.

Trametinib was largely well tolerated. Only minimal short-term toxicities (i.e. rash, paronychia) were found with the administration of trametinib even after years of treatment.

Limitations

Study is limited by retrospective nature and small sample size.

Prospective clinical trials are needed to further characterize tumor responses and adverse events.

Literature cited

- 1. Filbin, M. G., & Sturm, D. (2018). Gliomas in Children. Seminars in neurology, 38(1), 121–130. https://doi.org/10.1055/s-0038-1635106
- 2. Sievert, A. J., & Fisher, M. J. (2009). Pediatric low-grade gliomas. *Journal of child neurology*, 24(11), 1397–1408. https://doi.org/10.1177/0883073809342005
- 8. Selt, F., van Tilburg, C. M., Bison, B., Sievers, P., Harting, I., Ecker, J., Pajtler, K. W., Sahm, F., Bahr, A., Simon, M., Jones, D., Well, L., Mautner, V. F., Capper, D., Hernáiz Driever, P., Gnekow, A., Pfister, S. M., Witt, O., & Milde, T. (2020). Response to trametinib treatment in progressive pediatric low-grade glioma patients. *Journal of neuro-oncology*, 149(3), 499–510. https://doi.org/10.1007/s11060-020-03640-3
- 4. Gross, A. M., Wolters, P. L., Dombi, E., Baldwin, A., Whitcomb, P., Fisher, M. J., Weiss, B., Kim, A., Bornhorst, M., Shah, A. C., Martin, S., Roderick, M. C., Pichard, D. C., Carbonell, A., Paul, S. M., Therrien, J., Kapustina, O., Heisey, K., Clapp, D. W., Zhang, C., ... Widemann, B. C. (2020). Selumetinib in Children with Inoperable Plexiform Neurofibromas. *The New England journal of medicine*, 382(15), 1430–1442. https://doi.org/10.1056/NEJMoa1912735

Acknowledgments

Deborah Batson, i2B2 Data
Warehouse
Elizabeth Chick & Cheri
Adams, Center for Cancer and
Blood Disorders (CCBD)
Clinical Research Regulatory
Associates
Kristen Campbell, CHCO
Statistician

Further information

interest to declare.

Please email
tiffany.m.nguyen@cuanschutz.edu for any
questions or comments.
Funding provided by CHCO & Morgan
Adams Foundation

Conflicts of Interest Declaration
All authors have no conflicts of