Center for Women's Health Research UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

Sex Specific Quality of Life Differences in Chronic Rhinosinusitis

Background

- The use of subdomains in the Sino-Nasal Outcome Test (SNOT-22) has been validated to describe Chronic Rhinosinusitis (CRS) symptoms.
- Sex discrepancies have been reported in total SNOT-22 scores and individual traits, but limited data exist and subdomains have not been reported.
- Tissue biomarkers of CRS in regards to sex have not been assessed.

Hypothesis

- Women preferentially suffer from different CRS-related symptoms and comorbid conditions such as migraine disorder.
- Neuropeptides such as Substance P will be locally elevated in women with CRS.

Methods

- CRS patients presenting to a tertiary care rhinology facil intervention were recruited into an IRB-approved bio Colorado), where SNOT-22 and middle meatal mucus swabs
- Patient demographics and characteristics were summarized frequency (%) for the overall cohort and by sex.
- Gender differences in SNOT-22 subdomains were assessed using linear regression and adjusted for age, CRS diagnoses, smoking status, and use of topical nasal saline or corticosteroid medications.
- A random forest (RF) model was applied to assess importance of variables in predicting total SNOT-22 score.
- Significance assessed using two-sample t-tests for continuous variables and chi-square tests of independence or Fishers exact tests for categorical variables.
- Mucus Substance P was measured by ELISA in a subset of men and women matched for age and disease type to explore sex differences and relationship to SNOT-22 quality of life (QOL).

Demographics	Mean (SD) N (%)	Mean (SD) N (%)	Mean (SD) N (%)	p-value*
	Overall, N=520	Males, N=255	Females, N=265	
Age (years)	48.3 (15.1)	50.1 (14.8)	46.6 (15.4)	0.0081
Race				
Native American	2 (0.39)	0 (0)	2 (0.76)	
Asian	8 (1.5)	3 (1.2)	5 (1.9)	
Black	28 (5.4)	12 (4.7)	16 (6.0)	
White	436 (83.8)	219 (85.9)	217 (81.9)	
Hispanic	36 (6.9)	18 (7.1)	18 (6.8)	
Other	10 (1.9)	3 (1.2)	7 (2.6)	0.4812

Patient Demographics

Laylaa Ramos Arriaza,¹ Conner Massey,² Miranda Kroehl,² Vijay Ramakrishnan² ¹University of Colorado School of Medicine ²Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Disease Characteristics

lity f		Ŭ	
bank	(Jniv	of
were	e ol	otain	ed.
by me	ean	(sd)	or

Clinical	Mean (SD) N (%)	Mean (SD) N (%)	Mean (SD) N (%)	p-value*	Treatment	Mean (SD) N (%)	Mean (SD) N (%)	Mean (SD) N (%)	p-value*
CRSwNP	217 (41.7)	123 (48.2)	94 (35.5)	0.0042	Nasal Saline	391 (75.2)	183 (71.8)	208 (78.5)	0.0942
CRSw/oNP	201 (38.7)	87 (34.1)	114 (43.0)	0.0462	Nasal Steroid	380 (73.I)	176 (69.0)	204 (77.0)	0.0515
Polyposis with Aspirin					Other medical				
Sensitivity	41 (7.9)	I8 (7.I)	23 (8.7)	0.6012	management	37 (7.I)	15 (5.9)	22 (8.3)	0.3669
AFS	(0.19)	l (0.39)	0 (0)	NA	Previous				0 700 4
Immuno_			5 (1.9)	1.0000	Surgery	255 (49.0)	122 (47.8)	133 (50.2)	0.7904
suppresed	10 (1.9)	5 (1.9)			Disease				
Allergies	283 (54.4)	137 (53.7)	146 (55.1)	0.9395	Severity				
Asthma ²	257 (49.4)	123 (48.2)	134 (50.6)	0.7972	Endoscopy Score	5.1 (3.9)	5.2 (3.9)	4.9 (3.8)	0.3454
Smoking					CT Lund-				
Former	160 (30.8)	89 (34.9)	71 (26.8)		Mackay Score	10.4 (6.8)	11.3 (6.9)	9.5 (6.7)	0.0039
Current	39 (7.5)	21 (8.2)	18 (6.8)		SNOT-22				
Never	321 (61.7)	145 (56.9)	176 (66.4)	0.0767	Score	44.0 (21.3)	40.9 (20.7)	46.9 (21.6)	0.0013

Fig I: Random Forest Model for Total SNOT-22 Predictors

			LN	∕IS o	Ageo
Sex	0				
Smoking	o				
Nasal Steroids					
Asthma					
Asian Race					
Nasal Saline					
CRS	N P				
• Other	Meds				
AERD					
• AFS	_				
Immunosup	oressed				
0 5000	10000	45000	20000	25000	20000
0 5000	10000	15000	20000	25000	30000

Sex Differences in SNOT-22 Subdomains

SNOT 22 Subscale	Mean (se) difference between sex	p-value
Total	5.1 (1.78)	0.0046
Rhinologic	0.56 (0.59)	0.3433
Extranasal	0.35 (0.31)	0.2594
Ear/Facial	1.97 (0.43)	< 0.0001
Psych	1.83 (0.75)	0.0148
Sleep	1.45 (0.62)	0.0192

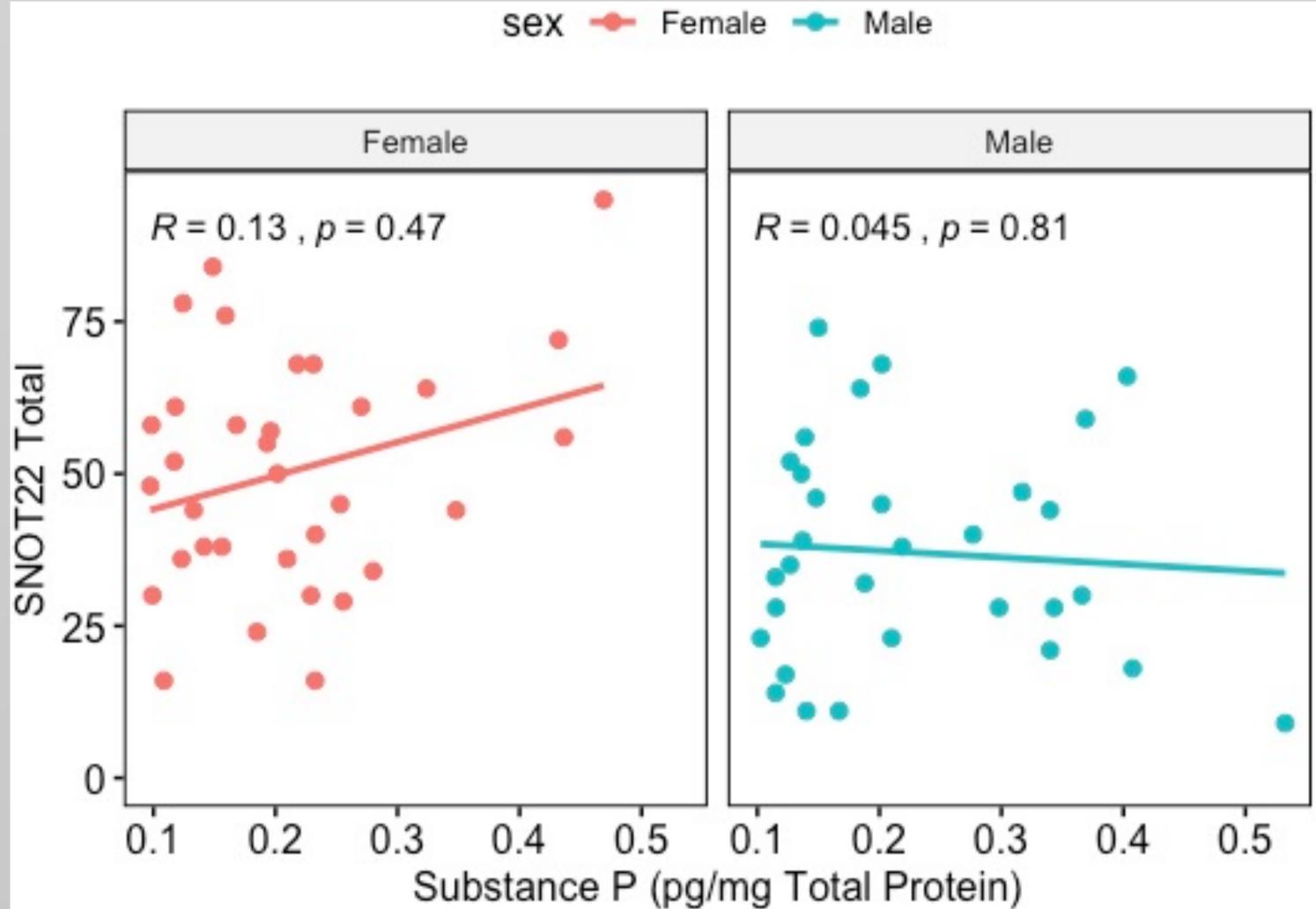

Mean Decrease in Gini for total SNOT 22

Figure I: Random Forest Model for Total **SNOT-22 Predictors**

- Higher values across the mean decrease in Gini index determine which variables are likely to predict higher SNOT-22 scores.
- LMS: CT Lund-Mackay Score, LKES: Endoscopy Score

Figure 2: Total SNOT-22 vs Concentration of Substance P by Sex

- Mean concentration of Substance P of 0.23 and 0.19 pg/ul Total Protein in females and males, respectively.
- CI: -0.69, 0.038 p-value: 0.57

Demographics and Baseline Disease Characteristics

Sex Differences in SNOT-22

Random Forest Model for Total SNOT-22 Score

Substance P by Sex and SNOT-22 Total

Department of Otolaryngology

SCHOOL OF MEDICINE

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

Fig 2:Total SNOT-22 Score vs [Sub P] by Sex

Results

• Significant age difference in male vs female groups with questionable biological importance

Sex differences in proportion of CRS subject with and without NP

Females suffered a higher QOL burden by total SNOT-22 score, despite similar disease on endoscopy and lesser disease on CT.

• Females exhibited worse QOL in SNOT-22 subdomains of Ear/Facial, Psychology and Sleep.

Top predictors for Total SNOT-22 were age, objective disease measures (CT and endoscopy scores), and then sex, above other variables such as smoking, presence of comorbid allergy or asthma, and presence of polyps or AERD.

Mucus Substance P was not statistically associated with Total SNOT-22 score, but exhibits a trend towards a weak association in the female group.

Conclusion

• Sex differences in patients with CRS exist between age at presentation for surgery, total SNOT-22 score, and SNOT-22 subdomain scores.

• Among the many predictor variables for total SNOT-22 score, sex is surprisingly high and warrants further attention.

• Substance P may weakly associate with total SNOT-22 score.

Acknowledgements

• We would like to thank the University of Colorado Center for Women's Health for funding and collaboration. Additional funding to VR by NIH/NIDCD K23DC014747.

For comments or questions please email: laylaa.ramosarriaza@cuanschutz.edu