

Functional Outcomes Following Total Hip Arthroplasty

Foster, C., & Samoza, F., & Yu, S., & Dean, C., & Dayton, M., & Hogan, C.

University of Colorado, Department of Orthopedics

Introduction:

- The number of hip arthroplasty procedures performed has increased significantly in recent decades in the United States from 138,700 in 2000 to an estimated 310,800 in 2010.¹
- Recent studies have investigated patient outcomes following total hip arthroplasty (THA) based on surgical approach.
- The anterior approach has been associated with a lower rate of dislocation and faster recovery in the first six to twelve post-operative weeks, but no significant advantages have been found beyond three months post-operatively.²⁻⁴
- Though self-reported outcomes are commonly utilized, functional measures represent a novel and objective technique for comparing outcomes after THA with respect to surgical approach.

Methods:

- Patients undergoing primary total hip arthroplasty between April 2015 and December 2018 were prospectively enrolled in the cohort and grouped by surgical approach 379 posterior, 400 anterior.
- Patients were evaluated pre-operatively and at both three and twelve months post-operatively.
- Perioperative data included surgical approach, operative time, estimated blood loss, and length of hospital stay.
- Outcomes were measured using the Hip Dysfunction and Osteoarthritis
 Outcome Score (HOOS, JR.), timed up and go (TUG) test, 30 second sit to
 stand test (30 sec STS), and four-meter walk test (4MWT).
- Adverse events that were recorded included trochanteric fracture, acetabular fracture, post-operative dislocation, post-operative infection, and wound healing problems.
- Mean differences between the direct anterior and posterior groups were tested using independent t-tests (normality assumption satisfied).

https://www.orthobullets.com/approaches

Patient Demographics				
	Anterior THA Average	Posterior THA Average	P value	
Age	62.3	60.9	0.904	
Gender (Male)	181	189	0.677	
Gender (Female)	219	190	0.151	
Diabetes Mellitus (% of patients)	7.50	10.8	0.440	
History of Deep Vein Thrombosis	6.75	7.39	0.865	
Smoker	11.3	9.76	0.745	
ВМІ	27.1	29.3	0.769	

Changes at 3 months post-op				
	Anterior THA Average	Posterior THA Average	P value	
HOOS Jr Score	8.59	7.65	0.045	
Time up and go (sec)	2.66	2.33	0.519	
30 Second sit to stand (# of reps)	2.49	2.71	0.638	
4-Meter walk test (sec)	1.18	1.23	0.820	

Changes at 1-year post-op					
	Anterior THA Average	Posterior THA Average	P value		
HOOS Jr Score	8.52	8.51	0.99		
Time up and go (sec)	3.15	2.86	0.71		
30 Second sit to stand (# of reps)	3.83	3.99	0.85		
4-Meter walk test (sec)	1.23	1.19	0.91		

Adverse Events				
	Anterior THA	Posterior THA	P value	
	Average	Average Average	1 Value	
Trochanteric Fracture (%)	2.00	1.06	0.25	
Acetabular Fracture	0.00	0.30	0.32	
Post-Operative Dislocation	1.25	2.60	0.20	
Post-Operative Infection	0.50	2.11	0.06	
Post-Operative wound complication	0.75	1.10	0.71	

Results:

- Patient demographics showed the two groups were similar.
- Self-reported outcomes and functional outcome scores improved among patients in both approach groups at both three and twelve months postoperatively.
- The anterior group showed significant improvement in HOOS, JR. score compared to the posterior group at three months postoperatively, but no difference existed at twelve months postoperatively.
- There were no significant differences in functional outcome between the two approach groups at three or twelve months postoperatively.
- There was no significant difference in frequency of adverse events between the two approach groups at three or twelve months postoperatively.

Conclusion:

- These data suggest anterior and posterior approaches are equally effective in restoring function among THA patients long-term.
- The anterior approach may have improved patient satisfaction in the early post-operative period.
- Surgeon preference is likely the most important factor in determining outcome following THA.

Acknowledgements:

This poster was made possible thanks to the work of Dr. Michael Dayton, Ellen Rhodes, Frank Samoza, Song Yu, & all contributing authors.

References:

- 1. Wolford ML, Palso K, Bercovitz A, Monica L. Wolford, M.A.; Kathleen Palso, M.A.; and Anita Bercovitz, M.P.H. PD. Hospitalization for Total Hip Replacement Among Inpatients Aged 45 and Over: United States, 2000–2010. Nchs. 2015;(186):8.
- 2. Graves SC, Dropkin BM, Keeney BJ, Lurie JD, Tomek IM. Does Surgical Approach Affect Patient-reported Function After Primary THA? Clin Orthop Relat Res. 2016;474(4):971-981. doi:10.1007/s11999-015-4639-5.
- 3. Rodriguez JA, Deshmukh AJ, Rathod PA, et al. Does the direct anterior approach in THA offer faster rehabilitation and comparable safety to the posterior approach? Clin Orthop Relat Res. 2014;472(2):455-463. doi:10.1007/s11999-013-3231-0.
- 4. Barrett WP, Turner SE, Leopold JP. Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. J Arthroplasty. 2013;28(9):1634-1638. doi:10.1016/j.arth.2013.01.034.