A One-Step Catheter Over Needle System Compared to a Single Shot Nerve Block for Shoulder Surgery

Aaron Smoroda, BS, †*, Jacob Loyd, MD, †*, Nathan Clendenen, MD, MS, † John Armstrong, MD, † Adrian Hendrickse, BM FRCA, † Matthew Lyman, MD, †, Kyle Marshall, MD, † Roland Flores, MD, † Adit Ginde, MD, MPH, † Olivia Romano, MD †

†Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO

Background

- Continuous peripheral nerve blockade (CPNB):
 - Single shot technique (SSNB)
 - Fast, but repeats may be necessary

 - Prolonged analgesia, lower doses
 - Additional time slows surgery start ->
- Catheters: Through-the-needle (CTN), Over-the-needle (CON).
 - CTN: Common, slower, leak, dislodge
 - CON: Newer, faster, don't require needle movement to fix, less leak.
- A one-step catheter over needle system potentially reduces catheter placement procedural time and therefore could expand access to continuous peripheral
- Comparison: SSNB vs CON placement

Methods

- Elective shoulder surgeries with interscalene peripheral nerve
- Comparison: SSNB vs. CON placement time
- Single trainee (JL) PGY 4-5 level under direct supervision of multiple regional anesthesiologists. Time keeper AS.
- 20 patients CTN, 20 patients SSNB
 - CTN system: Solo-DEX, 70 mm 20 gauge needle with a 4 French multi-orifice catheter + lidocaine 1mL 2% via gauge BD TB needle
 - SSNB: 80mm 20 gauge Stimuplex 360 block needle
- Time In: Needle to skin
- Time Out: Needle withdrawal
- 20mL 0.5% Bupivicaine
- Ultrasound guided and confirmed placement: Sonosite SII linear transducer. 13-6MHz
- Statistical Analysis: JMP Pro 14 software
 - Chi square analysis for categorical variables
 - Welch's t test for continuous variables
 - Linear mixed model to determine the association between procedure time while controlling for variability due to sex and block type (catheter or single shot), block order, patient BMI, and age.
 - Considered a two-tailed p-value less than 0.05 to be statistically significant
 - CLINICAL SIGNIFICANCE SET POINT:
 - Considered as doubling of block time

Results

SSNB and CON Groups comparable, except pulmonary

	SSNB (n =20)	CPNB (n =20)	Total (n = 40)
Demographics			
Age	59.0 ± 13.1	51.5 ± 15.3	55.2 ± 14.6
ВМІ	27.0 ± 5.3	29.3 ± 4.3	28.1 ± 4.9
		9/20 (45%)	17/40 (43%)
Parada	0/00 /400/)		
Female	8/20 (40%)	2/20 (459/)	4/40 (400/)
		3/20 (15%)	4/40 (10%)
Rural	1/20 (5%)		
Surgery			
Shoulder Arthroplasty or Joint Repair	7/20 (35%)	9/20 (45%)	16/40 (40%)
Rotator Cuff Repair	3/20 (15%)	5/20 (25%)	8/40 (20%)
Other Shoulder Repair	11/20 (55%)	7/20 (35%)	18/40 (45%)
Arthroscopic	9/20 (45%)	8/20 (40%)	17/40 (43%)
Open	11/20 (55%)	12/20 (60%)	23/40 (58%)
Healthcare Resource Use			
Hospitalizations in Last Year	6/20 (30%)	7/20 (35%)	13/40 (33%)
Emergency Department Visit in Last Year	2/20 (10%)	5/20 (25%)	7/40 (18%)
Comorbidities			
ASA < 3	17/20 (85%)	14/20 (70%)	31/40 (78%)
Cerebrovascular Disease	0/20 (0%)	1/20 (5%)	1/40 (3%)
Chronic Renal Disease	1/20 (5%)	3/20 (15%)	4/40 (10%)
Dialysis	0/20 (0%)	0/20 (0%)	0/40 (0%)
Dementia	0/20 (0%)	0/20 (0%)	0/40 (0%)
Primary Malignancy	4/20 (20%)	2/20 (10%)	6/40 (15%)
Metastatic Solid Tumor	0/20 (0%)	0/20 (0%)	0/40 (0%)
Peripheral Vascular Disease	0/20 (0%)	0/20 (0%)	0/40 (0%)
History of Peptic Ulcer Disease	0/20 (0%)	1/20 (5%)	1/40 (3%)
Liver Disease	2/20 (10%)	1/20 (5%)	3/40 (8%)

7/40 (18%) 0/20 (0%) 0/40 (0%) Hemiplegia or paraplegia **Atrial Arrhythmia** 2/20 (10%) 3/40 (8%) 4/40 (10%) 3/20 (15%) History of Heart Failure 1/20 (5%) 2/40 (5%) 10/20 (50%) 21/40 (53%) 3/20 (15%) 5/40 (13%) **Chronic Obstructive Pulmonary Disease** 1/40 (3%) 4/20 (20%) 6/40 (15%) History of Myocardial Infarction 1/20 (5%) 1/40 (3%) 1/20 (5%) 1/40 (3%) 4/20 (20%) 4/40 (10%) 3/20 (15%) 5/40 (13%) 11/20 (55%) 16/40 (40%) 0/40 (0%) 3/20 (15%) 5/40 (13%) 3/20 (15%) 5/40 (13%)

Table 1. Patient characteristics. Data are presented for all patients and by group with continuous variables listed as the mean (SD) and categorical variables as the ratio (%). Statistically significant differences between the groups are indicated with an *.

0/20 (0%)

2/40 (5%)

1/40 (3%)

1/40 (3%)

- onger time not clinically significant as did not double procedure time
- Catheter identified via Iltrasound, echogenicity similar for both techniques (figure 2)
- A linear mixed model lemonstrated a significant association between procedure ime and block type while controlling for variability due to sex and considering block order, patient BMI, and patient age table 2).
- Efficacy of blocks was comparable between groups

Figure 1: Box plots of the block time by group in minutes (Catheter: $2.1 \pm$ 0.6 minutes versus Single Shot: 1.4 \pm 0.4 minutes, p < 0.001, figure 1)

Table 2. Results of a linear mixed model estimating the block placement time in seconds and modeling the effect of random variation due to sex and a within model estimation of the effect of block type, block order, BMI, and age

Figure 2: Representative ultrasonography images for each group with schematic representations of notable structures in the image.

Conclusions

- CON vs SSNB comparable time to place, can expand access to CPNB without disrupting workflow
- CON requires a statistically significant increase in procedure time compared to a SSNB; however, the increased time was below our proposed threshold for a clinically significant difference.
- CON carries further intra- and postop benefits that may outweigh the slight increase in placement time over SSNB

Implications/Limitations

- CON placement may be faster over the course of practiced placement
- Pain management intra- and post-op is possible with CPNB, with lower doses than SSNB.
- First case start times may not be impacted with clinical significance, but more varied trainee placement may be needed to further assess

Disclosures

The authors declare no conflicts of interest.

The authors have no sources of funding to report for this study