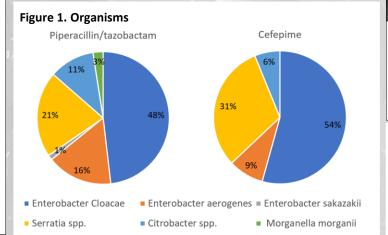


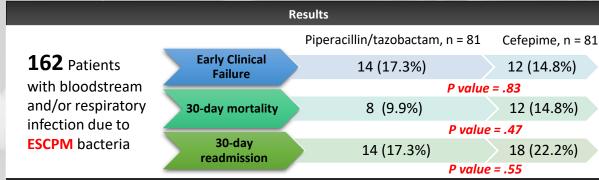
Piperacillin/tazobactam versus Cefepime for Empiric Treatment of ampC Producing Enterobacteriaceae

Crystal Kim, Pharm.D. Candidate 2021, Meghan N. Jeffres, Pharm.D., BCIDP University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences

Background

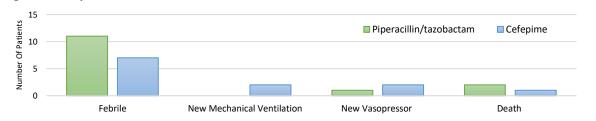
- The Centers for Disease Control and Prevention (CDC) reported 197,000 infections and 9,100 deaths caused by Enterobacteriaceae in 2017.¹
- AmpC is a chromosomally inducible gene found in certain Enterobacteriaceae. When activated this causes the bacteria to produce beta-lactamase leading to antibiotic resistance and treatment failure with antibiotics unstable against ampC.^{2,3}
- Though piperacillin/tazobactam is a weak inducer of ampC, the activation of the ampC gene can render the antibiotic to become resistant.⁴


Objective


Compare early clinical failure, 30-day mortality, and 30-day readmission between piperacillin/tazobactam and cefepime in patients with bloodstream and/or respiratory infections due to Enterobacter cloacae complex, Klebsiella (formerly Enterobacter) aerogenes, Serratia spp., Citrobacter spp., or Morganella morganii (ESCPM) infections.

Methods

- 672 patient records were reviewed at the University of Colorado Hospital between January 1, 2012 and June 1, 2020.
- Patients with bloodstream and/or respiratory infection positive for ESCPM bacteria were included in the study. The ESCPM isolates must exhibit resistance to first-generation cephalosporin and sensitivity to third-generation cephalosporins, piperacillin/tazobactam, and carbapenems.
- 207 patients met inclusion criteria and after the 1:1 nearest neighbor propensity match pair analysis this yielded 81 matched pairs.
- Primary outcome: early clinical failure was assessed 48 to 72 hours after receipt of empiric antibiotics.
 Composite outcome defined objectively as either a temperature >38.0°C, new vasopressor, new mechanical ventilation, transfer to ICU, or death.


Results **Table 1. Baseline Characteristics** Piperacillin/ tazobactam, **Patient Characteristics** Cefepime, n = 81 n = 8156 ± 16 Age, years ± SD 57 ± 16 Male, n (%) 57 (70.4) 52 (64.2) White/Caucasian, n (%) 50 (61.7) 57 (70.4) Quick Pitt Score, mean ± SD 1.73 ± 1.2 1.80 ± 1.2 ICU admission, n (%) 50 (61.7) 44 (54.3) Hospital origin, n (%) 28 (34.6) 38 (46.9) Respiratory source, n (%) 38 (46.9) 29 (35.8) Immunocompromised, n (%) 46 (56.8) 53 (65.4) Repeat culture positive, n (%) 58 (71.6) 62 (76.5) 124.2 ± 82.2 Empiric duration, hours ± SD 146.4 ± 97.6

No significant difference in early clinical failure, 30-day mortality, and 30-day readmission

Figure 2. Early Clinical Failure

Conclusion

- This study supports the use of piperacillin/tazobactam in patients with bloodstream and/or respiratory infections due to ESCPM bacteria. There was no statistical difference in early clinical failure, 30-day mortality, and 30-day readmission rates between piperacillin/tazobactam and cefepime therapy groups.
 - The use of piperacillin/tazobactam did not increase mortality or has worse clinical outcomes.
- Piperacillin/tazobactam can be safely used as an alternative treatment for ampC producing Enterobacteriaceae.
 - o Piperacillin/tazobactam are weak inducers of *ampC* therefore, emerging resistance by induction or activation of *ampC* is relatively low and continued use of piperacillin/tazobactam empirically is appropriate.

Deferences

- 1. CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019
- Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ; Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin Infect Dis. 2019;69(8):1446-1455. doi:10.1093/cid/ciz173
- 3. Chow JW, Fine MJ, Shlaes DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115(8):585-590. doi:10.7326/0003-4819-115-8-585
- 4. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161-182. doi:10.1128/CMR.00036-08

Contact/ Disclosure

Email: crystal.kim@cuanschutz.edu; The authors of this presentation report no conflict of interest and no funding