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IKZF1 low MM cells are associated

IMID resistant cell lines lose lkaros axis

IMID resistance in Multiple Myeloma

with IMID resistance

downregulation, but the IMIiD mechanism remains

Multiple myeloma (MM) is a plasma cell malignancy that afflicts more than 30,000 individuals intact in resistant patients
each year and is the second most prevalent adult hematologic cancer (USA). Treatment A) D45, D45+ B) K s hi MYC hi KZET
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Immunomodulatory drugs (IMiDs) are a cornerstone of MM therapy. IMiDs modulate the O' 0' e . . ) s | D 0-— 011 011 1
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termed the “lkaros axis™). The overall downregulation of the lkaros axis leads to MM cell cytotoxicity. 5 1507 _ ] 100 = 100 - : MYC hi is CD45-CD38+, and IKZF1 hi is CD45+CD38+CD138+. This gating strategy was used to obtain (B). (B) The sensitivity of
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MM cell lines, the functional consequences have not been investigated in patient samples. R B 0 50 50
Our hypothesis is that IMiD treatment fails to downregulate the lkaros axis in :
IMiD-resistant patient MM. T Umx Pam U Unx Pam U Umx Pem U Umx Pem IMiD resistant MM is sensitive to MYC inhibition
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Mass cytometry to interrogate lkaros axis expression in MM subpopulations Log Expression

MNCs from patient BM biopsies were thawed and cells were stained for a panel of MM and Figure 3. Mass cytometry of Ikaros axis in a patient sample. (A) UMAP of patient sample HTB-1389 showing

immune _Ce” surface markers, as Wel_l as light Chair_‘S (k/n), IKZF1/3, IRF4, MYC, three MM populations, as indicated by cluster color legend. (B) Histograms of every cluster showing the log mean
proliferative and apoptotic markers, and live/dead cell stain. The prepared mass cytometry signal intensity (MSI) of MM markers used to classify MM populations (red text). Ref = all live cells; defines high
samples were run on the Helios mass cytometer and analyzed in R (N=4). versus low expression. (C) Histograms of Ikaros axis protein log MSI in MM subpopulations.
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