

Role of smooth muscle-derived vascular progenitor cells in atherosclerosis

Allison M. Dubner^{1, 2}, Sizhao Lu¹, Marie F. Mutryn¹, Austin J. Jolly¹, Keith A. Strand¹, Natalie Navarro¹, Karen S. Moulton³, Raphael A. Nemenoff¹, Mary C.M. Weiser-Evans¹

¹University of Colorado School of Medicine, Division of Renal Diseases & Hypertension, ²University of Colorado Integrated Physiology PhD Program, ³University of Colorado School of Medicine, Division of Cardiology

Background

- Atherosclerosis is a major cause of morbidity and mortality worldwide, but current therapies fail to meet clinical needs.
- Expansion of adventitial microvessels, the vasa vasorum (VV), is believed to drive atherosclerosis progression by facilitating inflammatory cell infiltration.

Image adapted from https://www.earthslab.com/physiology/vasa-vasorum/

YFP (Gli1+) Sca1 DAPI

Lu, Sizhao, et al. "Smooth muscle–derived progenitor cell myofibroblast differentiation through KLF4 downregulation promotes arterial remodeling and fibrosis." *JCI*

In vitro studies demonstrated that AdvSca1-

endothelial cells (ECs), and myofibroblasts.

AdvSca1-SM cells contribute to in vivo vessel

formation via differentiation to SMCs or ECs.

SM cells can differentiate into SMCs,

Matrigel plug assays also showed that

- Our group previously identified a unique population of resident stem cells (AdvSca1-SM cells) that derive from mature vascular smooth muscle cells (SMCs) and reside in the vessel adventitia.
- AdvSca1-SM cells are selectively enriched for Gli1 compared to other vascular cells.
- This allowed us to develop the Gli1-Cre/Rosa-YFP mouse model, which selectively and permanently labels AdvSca1-SM cells with YFP, even if they differentiate into other cell types.

A. SMMHC YFP DARI 50µm

Majesky, Mark W., et al. "Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia

Hypothesis

In atherosclerosis, AdvSca1-SM cells will reprogram into smooth muscle or endothelial cells to contribute to vasa vasorum expansion and plaque progression.

Immune/

Methods

Mice randomized to treatment group:

 Control: Tamoxifen + standard chow
 Athero: Tamoxifen + PCSK9 (0, 2, 16 weeks) + Western diet

 Mice harvested at 8, 16, or 24 weeks for histology, flow cytometry, or scRNA-Seq

Atherogenic or Standard Diet

PCSK9 PCSK9

IP Tamoxifen

12 Days

t = 0 2 weeks

8 weeks

16 weeks

24 weeks

6-8 weeks old

Results

Conclusions & Future Directions

- AdvSca1-SM cells in atherosclerosis primarily differentiate into mature SMCs, modulated SMCs, and myofibroblasts.
 In addition, there remains a large reservoir of AdvSca1-SM cells in a stem-like state.
- AdvSca1-SM cells very rarely differentiate into endothelial cells.
- Despite previous evidence of SMCs gaining a macrophage-like phenotype in atherosclerosis, we identified only rare instances of AdvSca1-SM cells contributing to macrophage populations.
- Ongoing work with advanced lesions (24-30 weeks of treatment) will more fully define the functional role of AdvSca1-SM cells in atherosclerotic plaque progression.

Acknowledgements

- Integrated Physiology PhD Program
- CCTSI TL1 TOTTS Program
- Weiser-Evans and Nemenoff labs
- Thesis Committee
- Andrew Glugla
- Funding: TL1TR002533 (Dubner), NHLBI F31
 HL160149-01 (Dubner), R01 HL121877
 (Weiser-Evans/Majesky)