

Right Ventricular Performance During Exercise in Patients With Heart Failure

1. University of Colorado School of Medicine, Aurora CO, USA 2. Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, USA

Purpose
The purpose of this study is to characterize
resting and exertional right ventricular (RV)
function during exercise among patients with
heart failure with reduced ejection fraction
(HFrEF).

Patient Characteristics

Table 1: Cohort Characteristics	HFrEF N=6	
Characteristic		
Age, yrs	60±9	
Male sex, N (%)	5 (83)	
Height, cm	178±7	
Weight, kg	93±21	
Body mass index, kg/m ²	29±6	
Ischemic heart failure, N (%)	2 (33)	
Left ventricular ejection fraction, %	25±10	
Past Medical History		
Hypertension, N (%)	1 (17)	
Sleep apnea, N (%)	3 (50)	
Atrial fibrillation, N (%)	3 (50)	
Diabetes Mellitus, N (%)	3 (50)	
Chronic kidney disease, N (%)	3 (50)	
Creatinine, mg/dL	1.4±0.4	
Medications		
Beta-blockers, N (%)	4 (67)	
ACE-I/ARB/ARNI, N (%)	5 (83)	
Hydralazine, N (%)	1 (17)	
Isosorbide, N (%)	1 (17)	
Mineralocorticoid, N (%)	4 (67)	
Diuretic, N (%)	3 (50)	
Digoxin, N (%)	2 (33)	
Supine hemodynamics		
Right atrial pressure, mmHg	6±4	
Mean PA pressure, mmHg	25±13	
PCWP, mmHg	13±9	
PA Saturation, (%)	65±7	
Arterial Saturation, (%)	95±1	
Fick cardiac output, L/min	5.6±1.7	
ACE-I: angiotensin converting enzyme inhibitor; ARB:		
Angiotensin receptor blocker; ARNI: an		
Neprilysin inhibitor; PA: pulmonary arte	erial:	

PCWP: pulmonary capillary wedge pressure

Amy Rao BS¹; Armaan Yaseyyedi BS¹; William Cornwell III MD, MSCS²

Six patients (five males, 60 ± 9 yrs) completed invasive cardiopulmonary exercise testing (CPET) on upright cycle ergometry with conductance catheters for real-time RV pressure-volume (PV) analysis, as well as radial arterial catheterization for blood pressure monitoring. Data were collected at rest, two submaximal levels of exercise (Steady-States 1, 2) below ventilatory threshold, and peak effort. Breath-by-breath gas-exchange parameters were determined by indirect calorimetry. Cardiac output (Q_c) was determined by direct Fick.

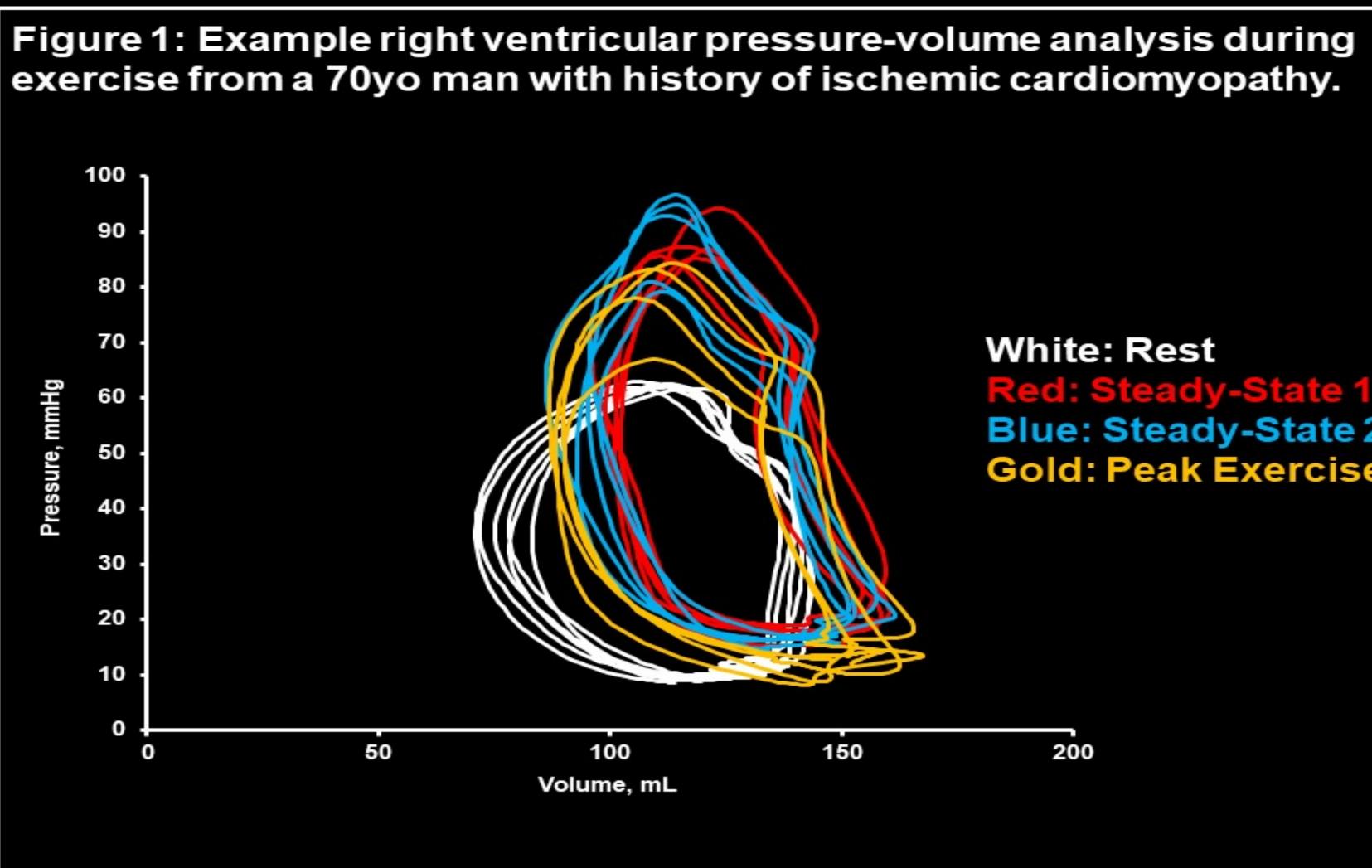
Table 2: Exercise Hemodynamics		
	HFrEF N=6	P-value
Characteristic		
Oxygen uptake, ml/kg/min		
Rest	4.1±0.8	0.01
Steady-State 1	8.6±2.4	
Steady-State 2	10.4±2.1*	
Peak Exercise	11.8±5.0	
Respiratory Exchange Ratio		
Rest	0.96±0.15	0.33
Steady-State 1	0.86±0.08	
Steady-State 2	0.93±0.07	
Peak Exercise	0.95±0.08	
Mean arterial pressure, mmHg		
Rest	87±11	0.09
Steady-State 1	86±20	
Steady-State 2	93±8	
Peak Exercise	78±11	
Cardiac output, L/min		< 0.01
Rest	4.5±1.2	
Steady-State 1	7.7±2.7*	
Steady-State 2	8.9±3.4	
Peak Exercise	8.8±1.9	
dpdt _{max} , mmHg/sec		< 0.01
Rest	329±51	
Steady-State 1	464±104*	
Steady-State 2	538±108	
Peak Exercise	538±70	
dpdt _{min} , mmHg/sec		< 0.01
Rest	-296±88	
Steady-State 1	-417±110*	
Steady-State 2	-430±109	
Peak Exercise	-463±70	
Stroke Work, mmHg*sec		0.02
Rest	1504±1105	
Steady-State 1	2371±588	
Steady-State 2	2417±535*	
이 집에서 잘 못 해야지. 않게 봐야 한 것 같아요.		

2473±1305

Peak Exercise *P<0.05 compared to baseline

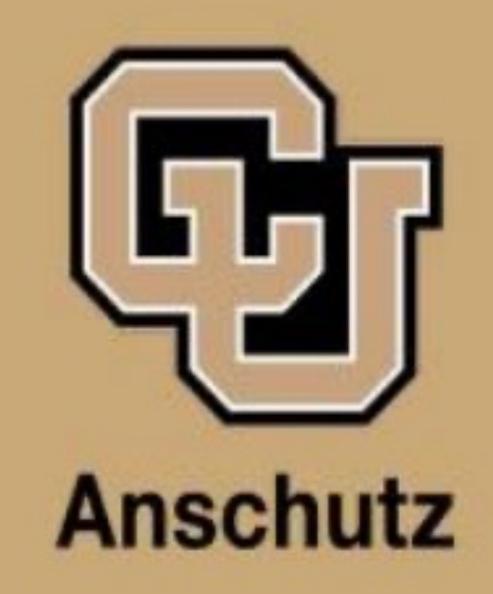
> HFrEF patients experience impairments in RV contractile and lusitropic reserve, and energy utilization during exercise. These findings demonstrate how exertional RV dysfunction contributes to impairments in functional capacity.

Materials and Methods


Results

D2Max was severely reduced (11.8 ± 5.0) and ventilatory efficiency was severely abnormal ± 15).

ercise Q_c increased from rest to Steady-State 1, but there were no increases thereafter at higher rkloads or at peak effort.


ercise myocardial energetics (stroke work) were also blunted with a modest increase from rest to ady-State 2.

astolic reserve (dpdt_{min}) increased modestly from rest to Steady-State 1 only. ble 2 displays exercise hemodynamics and gas-exchange parameters. example figure of hemodynamics and RV PV loops during exercise is displayed in Figure 1.

Conclusion

White: Rest **Red: Steady-State 1** Blue: Steady-State 2 Gold: Peak Exercise

200