The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders

Brittany T. Truong ${ }^{1,2}$ | Kristin B. Artinger ${ }^{2}$ ©

${ }^{1}$ Human Medical Genetics \& Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
${ }^{2}$ Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado

Correspondence

Kristin B. Artinger, Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave., MS8120, Aurora, CO 80045.
Email: kristin.artinger@cuanschutz.edu

Funding information

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Grant/Award Numbers: NIH 1F31HD103368-01 (B. T. T.), NIH
1R03HD096320-01A1 (К. В. A.)

Abstract

Summary Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.

KEYWORDS

craniofacial, human clinical genetics, limb, zebrafish model

1 | INTRODUCTION

Structural birth defects, including craniofacial and limb anomalies, affect 3% of newborns in the United States (Update on Overall Prevalence of Major Birth Defects, 2008). Human craniofacial defects occur in 1 in every 500-1,000 live births, with orofacial clefts being the most common (1:700) (Byvaltsev, Belykh, \& Belykh, 2012; Global registry and database on craniofacial anomalies, 2001), while congenital limb disorders affect 1 in 1,000-2,000 newborns (Vasluian et al., 2013; Wilcox, Coulter, \& Schmitz, 2015). Interestingly, these anomalies are not mutually exclusive. Many patients with craniofacial anomalies also present with upper and/or lower limb defects, such as syndactyly (digit fusion), ectrodactyly (missing digits), polydactyly (extra digits), and/or brachydactyly (shortening of the hands/feet). Syndromes that present with defects in both structures include Apert
syndrome (MIM \#101200), Pfeiffer syndrome (MIM \#101600), Roberts syndrome (MIM \#268300), and Saethre-Chotzen syndrome (MIM \#101400) among others (Table 1). This may be due to the synchronous timing of their development (Panthaki \& Armstrong, 2003). Others have proposed that paired limbs/fins are evolved from gill or pharyngeal arch skeletal elements, components of which give rise to the craniofacial skeleton (Gegenbaur, 1878). These studies suggest that there is a deep homology between the two structures. Many published reviews have thoroughly discussed vertebrate craniofacial or limb development separately and described how genetic or environmental factors can lead to congenital defects (Mercader, 2007; Mork \& Crump, 2015; Petit, Sears, \& Ahituv, 2017; Szabo-Rogers, Smithers, Yakob, \& Liu, 2010; Twigg \& Wilkie, 2015; A. Zuniga, 2015); however, to our knowledge, no one has adequately explored how or why craniofacial and limb anomalies often occur together.
TABLE 1 Human congenital disorders with both craniofacial and limb defects modeled in zebrafish

Syndrome	Human gene	Inheritance pattern	Major human craniofacial/ limb phenotypes	Zebrafish ortholog	Model	Zebrafish craniofacial phenotypes	Zebrafish pectoral fin phenotypes	Experimental assays	Reference
Achondroplasia (MIM \#100800)	FGFR3 ${ }^{\text {b }}$	AD	Macrocephaly; prominent forehead; brachydactyly; trident hand; bowed legs	fgri3	CRISPR-Cas9 LOF mutant	No phenotype	No phenotype	RT-qPCR; RNA ISH; skeletal staining	(Leerberg, Hopton, \& Draper, 2019)
Acrofacial dysostosis, Cincinnati type (MIM \#616462)	POLR1A	AD	Variable mandibulofacial dysostosis; micrognathia; upper/ lower eyelid clefts; microcephaly; brachydactyly	polr1a	LOF mutant	Hypoplastic/deformed: Meckel's cartilage; ceratohyal; trabeculae Absent: Ethmoid plate; hyosymplectic cartilage; ceratobranchial arches; palatoquadrate	Hypoplastic: Pectoral fin $^{\text {d }}$	RNA ISH; immunostaining; TUNEL assay; live-cell imaging; skeletal staining	(Weaver et al., 2015)
Acromelic frontonasal dysostosis (MIM \#603671)	zSWIM6	AD	Frontonasal dysplasia; nasal clefting; carpshaped mouth; preaxial polydactyly; tibial hypoplasia/aplasia	2swim6	N/A	N/A	N/A	RNA-FISH	(Smith et al., 2014)
Alagille syndrome 1 (MIM \#118450)	JAG1	AD	Broad, prominent forehead; deep, wide, low-set eyes; mandibular prognathia; brachydactyly	jag1a/ jag1b	MO LOF mutant Inducible GOF Tol2 mutant	Subtle midbrain and forebrain defects Hypoplastic: Ears Hypoplastic/deformed: Palatoquadrate; hyosymplectic cartilage; opercle bone Deformed: Meckel's cartilage; ceratohyal; hyosymplectic cartilage Ectopic cartilage near palatoquadrate and midline	N/A Hypoplastic: Pectoral fin ${ }^{d}$ N/A	RNA ISH; skeletal staining RNA ISH; RNA-FISH; skeletal staining; tissue transplants	(Lorent et al., 2004) (E. Zuniga, Stellabotte, \& Crump, 2010)
Alagille syndrome 2 (MIM \#610205)	NOTCH2	AD	Broad, prominent forehead; deep, wide, low-set eyes; mandibular prognathia; brachydactyly	notch2	MO MO	N/A Hypoplastic/deformed: Palatoquadrate; hyosymplectic cartilage; opercle bone Ectopic cartilage within mandibular and hyoid arches	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	RNA ISH RNA ISH; RNA-FISH; skeletal staining; tissue transplants	(Lorent et al., 2004) (E. Zuniga et al., 2010)
Andersen-Tawil syndrome (MIM \#170390)	KCNJ2	AD	Broad forehead; micrognathia; wide-set eyes; low-set ears; syndactyly; clinodactyly	kcnj2a/ knj2b	DN mRNA OE	Deformed: Palatoquadrate; hyosymplectic cartilage; ceratohyal Wide-set eyes; protruding jaw	Hypoplastic: Pectoral fin $^{\text {d }}$	RNA ISH; RT-qPCR; skeletal staining	(Leong, Skinner, Shelling, \& Love, 2013)

TABLE 1 (Continued)

Syndrome	Human gene	Inheritance pattern	Major human craniofacial/ limb phenotypes	Zebrafish ortholog	Model	Zebrafish craniofacial phenotypes	Zebrafish pectoral fin phenotypes	Experimental assays	Reference
Apert syndrome (MIM \#101200)	FGFR2 ${ }^{\text {a }}$	AD	Craniosynostosis; broad forehead; wide-set, bulging eyes; orofacial cleft; midface hypoplasia; syndactyly	fgfr 2	Mo	Hypoplastic/deformed: Meckel's cartilage; ceratohyal; hyosymplectic cartilage; ceratobranchial arches Absent: Ceratobranchial arches	Hypoplastic: Pectoral fin $^{\text {d }}$	RNA ISH; RNA-FISH; skeletal staining	(Larbuisson, Dalcq, Martial, \& Muller, 2013)
					CRISPR-Cas9 LOF mutant CRISPR-Cas9 LOF triple mutant (fgfr1a-/-; fgfr1b-/-; fgfr2 -/-)	No phenotype Hypoplastic/deformed: Meckel's cartilage; palatoquadrate; hyosymplectic cartilage; ethmoid plate Absent: Ceratobranchial arches	No phenotype Absent: Pectoral fin	RT-qPCR; RNA ISH; skeletal staining	(Leerberg et al., 2019)
Bent bone dysplasia syndrome (MIM \#614592)	FGFR2 ${ }^{\text {a }}$	AD	Craniosynostosis; large, wide-set eyes; low-set ears; micrognathia; midface hypoplasia; brachydactyly	fgfr 2	See above.				
Camptodactyly, tall stature, and hearing loss syndrome (CATSHLS) (MIM\# 610474)	FGFR3 ${ }^{\text {b }}$	AD	Microcephaly; elevated palate; camptodactyly (bent fingers)	fgri3	See above.				
Carpenter syndrome 1 (MIM \#201000)	RAB23	AR	Craniosynostosis; flat nasal bridge; low-set ears; micrognathia; downward slanting eyes; brachydactyly; syndactyly; polydactyly	rab23	MO; constitutively active mRNA OE	N/A	N/A	RNA ISH	(Fuller, O'Connell, Gordon, Mauti, \& Eggenschwiler, 2014)
Carpenter syndrome 2 (MIM \#614976)	MEGF8	AR	Craniosynostosis; flat nasal bridge; low-set ears; micrognathia; downward slanting eyes; brachydactyly; syndactyly or polydactyly	megf8	MO	N/A	N/A	N/A	(Twigg et al., 2012)
Cornelia de Lange syndrome I (MIM \#122470)	NIPBL	AD	Microcephaly; arched eyebrows that grow toward midline; low-set ears; micrognathia; small hands/feet; ectrodactyly; syndactyly in toes	Nipbla/ nipblb	MO (nipblb) MO (nipbla/ nipblb)	N/A N/A	N/A Hypoplastic: Pectoral fin	RNA ISH; TUNEL assay; IHC; RT-qPCR RNA ISH	(Pistocchi et al., 2013) (Kawauchi et al., 2016)

TABLE 1 (Continued)

Syndrome	Human gene	Inheritance pattern	Major human craniofacial/ limb phenotypes	Zebrafish ortholog	Model	Zebrafish craniofacial phenotypes	Zebrafish pectoral fin phenotypes	Experimental assays	Reference
Ectrodactyly-ectodermal dysplasia-Clefting syndrome 3 (EEC3) (MIM \#604292)	TP63	AD	Ectodermal dysplasia; Orofacial cleft; ectrodactyly	tp63	MO	N/A	Absent: Fin fold; pectoral fin	RT-qPCR; RNA ISH; IHC; BrdU assay; TUNEL assay	(Lee \& Kimelman, 2002)
					MO	N/A	Absent: Fin fold; pectoral fin	Transactivation assay; EMSA assay; RNA ISH	(Bakkers, Hild, Kramer, Hammerschmidt, 2002)
					LOF CRISPR-Cas9 mutant	N/A	Hypoplastic: Fin fold Absent: Pectoral fin	RNA-seq; ChlPmentation; ATAC-seq	(Santos-Pereira, GallardoFuentes, Neto, Acemel, \& Tena, 2019)
Greig cephalopolysyndactyly syndrome (MIM \#175700)	GLI3	AD	Macrocephaly; bulging forehead; broad nasal bridge; wide-set eyes; polydactyly; syndactyly; wide thumb or big toe	gli3	MO	N/A	N/A	RNA ISH; IHC	(Tyurina et al., 2005)
Hypochondroplasia (MIM \#146000)	FGFR3 ${ }^{\text {b }}$	AD	Macrocephaly; brachydactyly; bowed legs; shortened limbs	fgfr3	See above.				
Jackson-Weiss syndrome (MIM \#123150)	FGFR2 ${ }^{\text {a }}$	AD	Craniosynostosis; wide-set eyes; bulging forehead; brachydactyly and/or syndactyly of toes only	fgfr2	See above.				
Kabuki syndrome I (MIM \#147920)	KMT2D	AD	Orofacial cleft; microcephaly; micrognathia; wide-set, upward slanting eyes; depressed nose; shortened pinky finger	kmt2d	CRISPR-Cas9 mutant	Hypoplastic/deformed: Ethmoid plate; trabeculae; palatoquadrate Absent: Meckel's cartilage, ceratobranchial arches; ceratohyal; hyosymplectic cartilage	Hypoplastic/ deformed: Pectoral $\mathrm{fin}^{\mathrm{d}}$	RNA-seq; RT-qPCR; IHC; skeletal staining; drug treatment	(Serrano, Demarest, Tone-Pah-Hote, Tristani-Firouzi, \& Yost, 2019)
Kabuki syndrome II (MIM \#300867)	KDM6A	XLD	Orofacial cleft; microcephaly; micrognathia; wide-set, upward slanting eyes; depressed nose; shortened pinky finger	kdm6a/ kdm6al	MO	Hypoplastic/deformed: Ceratobranchial arches; Meckel's cartilage; ceratohyal (kdm6a only)	Hypoplastic: Pectoral fin (kdmba only) ${ }^{\text {d }}$	Skeletal staining; H\&E stain; IHC; live-cell imaging	(Van Laarhoven et al., 2015)
Lacrimo-auriculo-dentodigital syndrome (MIM \#149730)	$\begin{aligned} & F G F R 2^{a} \\ & F G F R 3^{b} \end{aligned}$	$\begin{aligned} & \text { AD } \\ & \text { AD } \end{aligned}$	Hypoplasia/aplasia of lacrimal system; orofacial cleft (variable); low-set ears; polydactyly, syndactyly, and/or ectrodactyly	$\begin{aligned} & \text { fgfr2 } \\ & \text { fgfr3 } \end{aligned}$	See above. See above.				

TABLE 1 (Continued)

Syndrome	Human gene	Inheritance pattern	Major human craniofacial/ limb phenotypes	Zebrafish ortholog	Model	Zebrafish craniofacial phenotypes	Zebrafish pectoral fin phenotypes	Experimental assays	Reference
Muenke syndrome (MIM \#602849)	FGFR3 ${ }^{\text {b }}$	AD	Craniosynostosis; wide-set, bulging eyes; macrocephaly; elevated palate; brachydactyly;	fgfr3	See above.				
Oral-facial-digital syndrome I (MIM \#311200)	OFD1	XLD	Orofacial cleft; split tongue; broad nose; wide-set eyes; micrognathia; brachydactyly, syndactyly, clinodactyly	ofd1	MO	Deformed: Meckel's cartilage	N/A	RT-qPCR; RNA ISH; IHC; live-cell imaging; skeletal staining; microarray; bead \& dextran injections	(Ferrante et al., 2009)
Pfeiffer syndrome (MIM\#101600)	FGFR1	AD	Craniosynostosis; bulging, wide-set eyes; high forehead; micrognathia; beaked nose; brachydactyly; syndactyly	fgfr1a/ fgfr1b	MO (fgfr1a) Inducible DN mutant (fgfr1a)	Hypoplastic: Meckel's cartilage Absent: Ceratobranchial arches Hypoplastic/deformed: Meckel's cartilage; ceratohyal; ceratobranchial arches; hyosymplectic cartilage Absent: Meckel's cartilage; ceratohyal; ceratobranchial arches; hyosymplectic cartilage	Hypoplastic: Pectoral $\mathrm{fin}^{\mathrm{d}}$ Hypoplastic: Pectoral $\mathrm{fin}^{\mathrm{d}}$ Absent: Pectoral fin ${ }^{\text {d }}$	RNA ISH; RNA FISH; skeletal staining	(Larbuisson et al., 2013)
					CRISPR-Cas9 LOF single mutant CRISPR-Cas9 LOF double mutants (fgfr1a-/-; fgfr1b -/-)	No phenotype Deformed/hypoplastic: Meckel's cartilage; ceratohyal; hyosymplectic cartilage; ethmoid plate Absent: Ceratobranchial arches	No phenotype Absent: Pectoral fin	RNA ISH; skeletal staining	(Leerberg et al., 2019)
	FGFR2 ${ }^{\text {a }}$	AD		fgfr2	See above.				
Popliteal pterygium syndrome (MIM \#119500)	IRF6 ${ }^{\text {c }}$	AD	Orofacial cleft; micrognathia; thin upper lip; syndactyly	irf6	N/A MO DN mRNA OE	N/A No phenotype Hypoplastic: Meckel's cartilage; ceratohyal; palatoquadrate; ceratobranchial arches; hyosymplectic	N/A No phenotype Hypoplastic: Pectoral fin	RT-qPCR; RNA ISH; skeletal staining; TUNEL assay	(Sabel et al., 2009)
					DN Tol2 mutant	Hypoplastic/deformed: Ethmoid plate; Meckel's cartilage; palatoquadrate	N/A	RNA ISH; IHC; EdU assay; TUNEL assay; live-cell imaging; skeletal staining	(Dougherty et al., 2013)

TABLE 1 (Continued)

TABLE 1 (Continued)

Syndrome	Human gene	Inheritance pattern	Major human craniofacial/ limb phenotypes	Zebrafish ortholog	Model	Zebrafish craniofacial phenotypes	Zebrafish pectoral fin phenotypes	Experimental assays	Reference
Van der Woude syndrome 1 (MIM \#119300)	IRF6 ${ }^{\text {c }}$	AD	Orofacial cleft; lower lip pits and/or sinuses; hypodontia; syndactyly	irf6	See above.				
Van der Woude syndrome II (MIM \#606713)	GRHL3	AD	Orofacial cleft; lower lip pits and/or sinuses; hypodontia; syndactyly	grhl3	MO	Hypoplastic/deformed: Ceratohyal; ceratobranchial arches; palatoquadrate; Meckel's cartilage; ethmoid plate, Absent: Ceratobranchial arches	Hypoplastic: Pectoral $\mathrm{fin}^{\mathrm{d}}$	RNA ISH; skeletal staining; electron microscopy; TUNEL assay; microChIP assay; EdU assay;	(Dworkin et al., 2014)
					DN mRNA OE	N/A	N/A	RNA ISH	(Peyrard-Janvid et al., 2014)
					MO; LOF CRISPR-Cas9 mutant	N/A	N/A	IHC	(Miles et al., 2017)

 transcription activator-like effector nucleases; XLD, X-linked dominant. ${ }^{\mathrm{a}}$ FGFR2 variants are thought to cause nonspecific craniosynostosis and are associated with multiple different craniofacial syndromes.
${ }^{\mathrm{b}}$ FGFR3 variants are associated with multiple different craniofacial syndromes.

[^0]In this review, we analyze syndromes that present with both craniofacial and limb defects, and we focus specifically on those that have been studied using a zebrafish model. Zebrafish serve as a useful developmental model to study these syndromes because they are relatively easy to genetically modify, inexpensive to maintain, reproduce and develop quickly, and the transparency of the embryo allows for live imaging in vivo. The zebrafish skeleton is also simpler, with fewer structural elements and larval cartilages are only a few cell layers thick, making them easier to visualize. Its pectoral and pelvic fins are homologous to mammalian forelimbs and hindlimbs, respectively (Grandel \& Schulte-Merker, 1998). Most of the gene regulatory networks involved in both craniofacial and limb/fin development are highly conserved between zebrafish and mammals. The information obtained from zebrafish studies can provide valuable insight into human development. First, we will very briefly describe the processes governing craniofacial and limb/fin development as a preface. Then we will highlight recent studies that have used zebrafish to uncover the mechanism(s) by which certain genes cause syndromes with craniofacial and limb defects. We hope to identify common themes and mechanisms that can help explain why these two defects often occur together.

2 | BRIEF OVERVIEW OF CRANIOFACIAL AND LIMB DEVELOPMENT

2.1 | Craniofacial development

Much of the facial skeleton is derived from cranial neural crest cells. Neural crest cells (NCCs) are a multipotent population of cells that originate at the dorsal most part of the neural tube. During development, NCCs undergo an epithelial-mesenchymal transition to delaminate from the neural tube, migrate to different regions of the body, and differentiate into specific cell types. Cranial NCCs are a subpopulation of NCCs that migrate from the neural tube into the pharyngeal arches and the facial prominences. They interact with head mesoderm in response to signals from the ectoderm and endoderm to differentiate into cartilage, bone, cranial neurons, glia, and connective tissues to form the frontonasal skeleton, jaw, odontoblasts of the teeth, middle ear, glia, and cranial neurons.

The skull is divided into two structures, the viscerocranium and neurocranium. The viscerocranium forms the lower part of the skull and supports the structure of the face. It is comprised entirely of NCCs from the pharyngeal arches (Kague et al., 2012; Morriss-Kay, 2001). Each pharyngeal arch gives rise to different structures. The first arch forms the lower jaw (mandibular domain) and the palate (maxillary domain); the second arch (hyoid) forms the ceratohyal and hyomandibular bones, which connect the lower jaw to the neurocranium; and in zebrafish, the third through the seventh arches give rise to the ceratobranchial cartilages, which support the gill tissues (Schilling \& Kimmel, 1997) (Figure 1a,c). In mammals, these posterior arches form laryngeal cartilage. Interestingly, parts of the zebrafish jaw and hyoid skeleton are evolutionarily homologous to the mammalian middle ear bones. More specifically, the Meckel's cartilage and

FIGURE 1 Homologous craniofacial structures between zebrafish and mammals. (a) Lateral view of zebrafish head skeleton. The posterior end of the Meckel's cartilage, the palatoquadrate and hyosymplectic cartilage are homologous to structures in the mammalian middle ear, particularly the malleus, incus, and stapes bone (b). (c) Dorsal view of the zebrafish neurocranium, which is analogous to the mammalian palate (d). (e,f) Dorsal view of the zebrafish and mammalian cranial sutures. Homologous structures have the same color, and analogous structures have added hashmarks. Adapted from Mork and Crump (2015). c, cochlea; cbs, ceratobranchial arches \#1-5; ch, ceratohyal; cs, coronal sutures; ed, ear drum; ep, ethmoid plate; fr, frontal bones; hs, hyosymplectic cartilage; i, incus; ifs, interfrontal sutures; ls, lambdoid sutures; m, Meckel's cartilage; ma, malleus; mep, medial ethmoid plate; n, notochord; oc, occipital bone; pa, parietal bones; pch, parachordal; pp, primary palate; pq, palatoquadrate; ps, parasphenoid; so, supraoccipital bone; sp, secondary palate; ss, sagittal sutures; st, stapes bone; tr, trabecula
part of the palatoquadrate are homologous to the malleus and incus of the middle ear, while the hyomandibula portion of the hyosymplectic cartilage is homologous to the stapes bone (Figure 1a, b) [reviewed in Anthwal, Joshi, \& Tucker, 2012, Mork \& Crump, 2015]. Molecular mechanisms governing lower jaw development have been well-studied in both mice and zebrafish. For a more detailed review, we refer to Clouthier, Garcia, and Schilling (2010) and Santagati and Rijli (2003). One of the most critical factors in lower jaw development is endothelin-1 (Edn1) signaling through the endothelin-A receptor (Ednra) (schematic in Figure 2a). In zebrafish, loss of edn1 leads to a severe truncation of the Meckel's cartilage, a loss of the ceratohyal bone, and a homeotic transformation of the
lower jaw to an upper jaw (Kimmel, Ullmann, Walker, Miller, \& Crump, 2003; Miller, Schilling, Lee, Parker, \& Kimmel, 2000). Similar phenotypes are observed in Edn1-/- and Ednra-/- mice, suggesting that their roles in craniofacial development are conserved (Clouthier et al., 1998; Kurihara et al., 1994). Endothelin signaling is required for downstream expression of Dlx5/Dlx6, as well as Dlx3 and Hand2 in the ventral most part of the pharyngeal arch. The dlx homeobox genes are important for establishing the dorsal/ventral axis in craniofacial development and are further regulated by Mef2c (Miller et al., 2007). $n k x 3.2$ (bapx1) is an additional homeobox gene that regulates genes involved in jaw joint formation. Its expression is limited to the intermediate region of the pharyngeal arch, and it is repressed by Hand2 in

FIGURE 2 Molecular mechanisms governing lower jaw and cranial suture development. (a) Simplified schematic of endothelin-1 signaling in the first pharyngeal arch during lower jaw development. Endothelin signaling is required for downstream expression of Dlx homeobox genes, which are required for dorsal/ventral patterning, and Hand2, which represses $\mathrm{Nkx3.2}$ in the ventral region of the pharyngeal arch. Nkx 3.2 is also regulated by Bmp4 in the most dorsal part of the arch and Fgf8 in the ectoderm.
(b) Schematic of genes and pathways involved in cranial suture development. Twist1 is capable of forming homodimers (T / T) and heterodimers with E proteins (T/E). These two forms act antagonistically with one another to regulate FGFR2 activity, downstream BMP signaling, osteogenic differentiation, and suture closure. ID, inhibitor of DNA binding; ph, pharyngeal arch; T/E, Twist1 heterodimer; T/T, Twist1 homodimer
(a)

the ventral region, Fgf8 in the oral epithelium, and Bmp4 in the distal pharyngeal arch (Miller, Yelon, Stainier, \& Kimmel, 2003; Miyashita et al., 2020; Wilson \& Tucker, 2004). DLX5/DLX6 and NKX3.2 are also involved in human limb development. Variants are associated with split hand/foot malformation (MIM \#183600) and spondylo-megaepiphyseal-metaphyseal dysplasia (MIM \#613330), respectively.

The neurocranium is composed of both cranial NCCs and mesoderm and protects and supports the brain (Wada et al., 2005). Cranial NCCs in the maxillary domain of the first pharyngeal arch give rise to the palate after cells migrate medially to converge at the midline of the roof of the mouth. In mammals, palatal shelves composed of cranial NCCs grow and converge at the midline to form an epithelial seam, while the primary and secondary palates fuse to create the palatal skeleton (Figure 1d). The zebrafish palate is located in the anterior part of the neurocranium and consists of the ethmoid plate, trabeculae, and parasphenoid bone (Figure 1c). Orofacial clefting occurs when the palatal shelves fail to come together. Clefting, truncation,
hypoplasia, or the absence of these structures is indicative of orofacial clefting in zebrafish (Dougherty et al., 2013; Eberhart et al., 2008; Swartz, Sheehan-Rooney, Dixon, \& Eberhart, 2011; Wada et al., 2005). It is still unclear whether cranial NCCs that form the palate fuse in zebrafish as well or if they are differentiating in a posterior to anterior pattern (Dougherty et al., 2013; Swartz et al., 2011). Early palatogenesis is conserved among vertebrates. Mice and zebrafish share similar expression patterns of critical genes involved in palate formation in the anterior maxillary domain (msxe, bmp4, bmp2b, and fgf10a) as well as the posterior maxillary domain (tbx22, osr1, osr2, pax9a) (Braybrook et al., 2002; Peters, Neubuser, Kratochwil, \& Balling, 1998; Swartz et al., 2011) [reviewed in (Hilliard, Yu, Gu, Zhang, \& Chen, 2005). They also utilize the same signaling pathways, such as Fgf, Pdgfr, Bmp, Tgfb, Wnt, and Shh, and disruptions to any of these pathways result in craniofacial defects, particularly in the anterior neurocranium (Dougherty et al., 2013; Eberhart et al., 2008; Swartz et al., 2011; Wada et al., 2005). For example, fgf10a is
expressed throughout the oral ectoderm and knocking down this gene produces a shortened trabeculae and parasphenoid bone and a misshapen Meckel's cartilage and palatoquadrate (Swartz et al., 2011). Fgf10a regulates Shh signaling, which is critical for cranial NCC migration to the midline and induction of chondrogenesis. Loss of Shh in zebrafish causes inappropriate fusion of the trabeculae (Wada et al., 2005). Interestingly, Fgf10a and Shh are both critical for limb development as well (see below). Loss of either gene leads to defects in the pectoral fin, which is homologous to mammalian forelimbs (Swartz et al., 2011; van Eeden et al., 1996). Although early development of the mammalian and zebrafish palates appear genetically similar with similar patterning formation, there are distinct morphogenic differences at later stages, warranting caution when comparing zebrafish and mammalian palatogenesis [reviewed in (Bush \& Jiang, 2012)].

The skull vault of the neurocranium has five bones that are connected by cranial sutures, or fibrous tissues. The anatomical structure of the skull vault and its cranial sutures is conserved between humans and zebrafish (Figure 1e,f). The sutures are patent in early development, providing room for the skull and brain to grow. The timing of suture closure differs as human sutures are only patent during early childhood whereas zebrafish sutures remain patent throughout the life of the fish (Quarto \& Longaker, 2005). The molecular mechanisms dictating cranial suture formation and closure are conserved among vertebrates, rendering zebrafish a useful model for studying craniosynostosis, a common skeletal defect that occurs when cranial sutures prematurely fuse (Quarto \& Longaker, 2005; Topczewska, Shoela, Tomaszewski, Mirmira, \& Gosain, 2016) [reviewed in (Holmes, 2012)]. The skull stops growing perpendicular to the fused suture and compensates by growing in a parallel fashion. Therefore, patients with craniosynostosis have abnormally shaped skulls. Most cases of craniosynostosis are caused by genetic variants in TWIST1, FGFRs, and EFNB1 among other genes [reviewed in $\mathrm{Wu} \& G u, 2019$]. Twist1 is a transcription factor that is expressed in either the osteogenic front as a homodimer (T/T) or as a heterodimer with E proteins (T/E), such as Tcf12, in the mesenchymal cells of cranial sutures (schematic in Figure 2b). These two forms of Twist1 act in opposition to one another. The T/T homodimers activate FGFR2 and promote osteogenic differentiation by increasing BMP signaling as well as Msx2 and Runx2 expression. This leads to suture closure. In contrast, the T/E heterodimer represses FGFR2, preventing osteogenesis and suture closure. The ratio of Twist1 homodimer to heterodimer changes over time as an organism grows and develops. An untimely excess of T/T homodimer leads to increased FGFR2 expression, decreased Eph/Ephrin signaling, an inappropriate influx of neural crest cells to the paraxial mesoderm, and craniosynostosis (Connerney et al., 2008; Merrill et al., 2006).

Later in this review, we summarize studies that have used zebrafish to study syndromes with craniofacial anomalies, including orofacial clefting and craniosynostosis.

2.2 | Limb development

The zebrafish pectoral and pelvic fins are homologous to mammalian forelimbs and hindlimbs, respectively. Limb growth begins at the
lateral plate mesoderm, where mesenchyme precursors form a small bud surrounded by an ectodermal layer (schematic in Figure 3d). Retinoic acid is synthesized in the surrounding somites and, along with Wnt signaling, establishes the limb field and initiates limb induction (Grandel et al., 2002; Ng et al., 2002). Fgf signaling is required for the formation and function of the apical ectodermal ridge (AER) (Niswander, Tickle, Vogel, Booth \& Martin 1993; Sekine et al., 1999; Sun, Mariani, \& Martin, 2002), which regulates limb outgrowth and establishes the proximodistal axis (shoulder to digits) (Saunders, 1948). Transcription factors Tbx5 (Agarwal et al., 2003; Ng et al., 2002) and p63 (Bakkers et al., 2002) induce Fgf signaling in the mesenchyme and AER. This establishes a complex epithelialmesenchymal feedback loop that activates proliferation and differentiation of mesenchymal cells resulting in limb outgrowth (Ohuchi et al., 1997). Fgf signaling in the AER is negatively regulated by BMP signaling (Niswander \& Martin, 1993; Pajni-Underwood, Wilson, Elder, Mishina, \& Lewandoski, 2007; Pizette \& Niswander, 1999). Moreover, BMP signaling is required for interdigital programmed cell death and preventing finger webbing as well as polydactyly (PajniUnderwood et al., 2007; Selever, Liu, Lu, Behringer, \& Martin, 2004). The anterior/posterior axis (digits 1-5) is established by Shh signaling in the zone of polarizing activity (ZPA) (Riddle, Johnson, Laufer, \& Tabin, 1993; Saunders \& Gasseling, 1968). Shh also regulates and is regulated by Fgf signaling in the AER (Laufer, Nelson, Johnson, Morgan, \& Tabin, 1994; Niswander, Jeffrey, Martin, \& Tickle, 1994). The dorsal/ventral axis (back of hand to palm) is dictated by expression of Wnt7a (dorsal) and En1(ventral) (Davis, Holmyard, Millen, \& Joyner, 1991; Gardner \& Barald, 1992; Loomis, Kimmel, Tong, Michaud, \& Joyner, 1998; Parr \& McMahon, 1995). Each gene and pathway are interconnected, and dysregulation at any point can cause abnormal limb growth [reviewed in (Kantaputra \& Carlson, 2019)] (Figure 3d).

The first skeletal elements to form in the zebrafish pectoral fin bud are the scapulocoracoid, postcoracoid, and endoskeletal disk, which are all derived from fin mesenchymal cells. By 4 dpf (days post fertilization), collagenous rays called actinotrichia form and act as supportive elements for the fin fold (Figure 3a). This larval endoskeleton structure persists for several weeks until cells in the endoskeletal disk proliferate and expand the fin. The cartilage matrix of the intermediate larval structure decomposes, and at $23 \mathrm{dpf}(7.1 \mathrm{~mm}$ standard length), rod-like dermal bones called lepidotrichia, or fin rays, form. By $28 \mathrm{dpf}(9.5 \mathrm{~mm})$, the endoskeletal disk splits to form four proximal radial bones. There are also six to eight distal radial bones located above and distal to the proximal radials that later fuse to the lepidotrichia (Grandel \& Schulte-Merker, 1998) (Figure 3b). The pelvic fins do not begin formation until $18 \mathrm{dpf}(6 \mathrm{~mm})$, and their development is similar to that of pectoral fins. The main difference is that the pelvic fin bud develops more quickly and does not require an intermediate larval endoskeleton before the terminal adult fin structure ($29 \mathrm{dpf}, 10.1 \mathrm{~mm}$). For a more detailed description of the anatomy of zebrafish fin development, we refer to Grandel and SchulteMerker (1998).

Morphologically, zebrafish fins and mammalian limbs are distinct from one another, and it is difficult to assign which elements are truly

FIGURE 3 The gene regulatory networks involved in zebrafish and mammalian limb development are highly conserved. The zebrafish pectoral fin, shown at 4 days post fertilization (a) and adulthood (b), is homologous to the mammalian forelimb (c). (d) Schematic of genes and pathways involved in early limb development. Limb bud initiation begins with retinoic acid (RA) signaling in the surrounding somites (teal). This then leads to the initiation of Fgf signaling in the mesoderm and ectoderm and limb bud growth at the lateral plate mesoderm. The AER (navy) dictates outgrowth and the proximal/distal axis; the ZPA (purple) determines the anterior/posterior axis; and WNT7A/EN1 (green) establish the dorsal/ventral axis. As such, each gene and pathway are interconnected and rely on one another for proper limb growth. Abbreviations: ac, actinotrichia; AER, apical ectodermal ridge; c, carpal bones; dr, distal radials; ed, endoskeletal disk; fr, fin rays; h, humerus; mc, metacarpals; pc, postcoracoid; ph, phalanges; pr, proximal radials; r, radius; RA, retinoic acid; sc, scapulocoracoid; u, ulna; ZPA, zone of polarizing activity

homologous [reviewed in (Yano \& Tamura, 2013)] (Figure 3a-c). Nevertheless, the conservation of the gene regulatory networks indicates that they are still a useful model for limb development. Researchers can examine the larval pectoral fin ($4-5 \mathrm{dpf}$) and look for deformities in the shape and length of cartilage structures. If a mutant survives to adulthood, researchers can look more closely at the bones that develop later and use them as a model for human limb bones. Differences in the number of proximal radial bones, number of distal radial bones, or the length of lepidotrichia can be indicators of human polydactyly (more bones), ectrodactyly (fewer bones), or brachydactyly (shortening of bones). Medaka fish (Oryzias latipes) has been used by Letelier et al. (2018) to model human ectrodactyly caused by decreased SHH signaling by partially deleting an upstream shh limb enhancer known as ZRS. This deletion leads to a decrease in proximal radial bones from four to two in adult fish. Below, we discuss ways in
which zebrafish have been used to study human craniofacial and limb defects.

3 | ZEBRAFISH MODELS OF CRANIOFACIAL ANOMALIES WITH ACCOMPANYING LIMB DEFECTS

Structures of the craniofacial and limb skeleton are clearly distinct from one another, but they utilize many of the same gene regulatory networks and mechanisms for their development, such as Fgf, Bmp, Wnt, and Shh signaling. It follows then that several human congenital syndromes caused by single gene variants present with defects in both structures (Panthaki \& Armstrong, 2003). Here we will describe a few examples in which zebrafish were used to study specific
syndromes characterized by orofacial clefting, craniosynostosis, and limb defects. Orofacial clefting and craniosynostosis are the two most common craniofacial phenotypes, so our primary focus is here. A full list of craniofacial and limb human syndromes that have been modeled with zebrafish can be found in Table 1. Some of these studies explored different phenotypes associated with the syndrome. For example, Fuller et al. (2014) use zebrafish to model the left/right patterning defects observed in patients with Carpenter syndrome I (MIM \#201000). We have chosen to highlight studies that specifically studied genes in the context of craniofacial and/or limb development.

3.1 | Orofacial clefting and missing/fused digits

Orofacial clefting, namely cleft lip with or without cleft palate, is the most common craniofacial anomaly occurring in 1 in 700 newborn babies (Global registry and database on craniofacial anomalies, 2001). Cleft palate occurs in humans when the palatal shelves fail to elevate or properly fuse at the midline. As mentioned above, the zebrafish ethmoid plate is often used to model the mammalian palate. For a comprehensive review on zebrafish models of orofacial clefting we refer to Duncan, Mukherjee, Cornell, and Liao (2017). Here, we will discuss recent zebrafish studies of syndromes that present with both orofacial clefting and limb defects, primarily ectrodactyly (missing digits) and syndactyly (fused digits).

3.1.1 | Roberts syndrome

Roberts syndrome (MIM \#268300) is an autosomal recessive disorder characterized by orofacial clefting, micrognathia (hypoplastic jaw), downward slanting, wide-set eyes, a beaked nose, microcephaly, hypoplastic limbs, syndactyly, and joint deformities (Roberts, 1919). Using multipoint linkage analysis, Vega et al. (2005) found eight different homozygous variants in ESCO2 in affected individuals. ESCO2 is a highly conserved gene that encodes an N -acetyltransferase required for holding sister chromatids together after DNA replication and before mitosis (Rolef Ben-Shahar et al., 2008). In zebrafish, esco2 is expressed in the branchial arches and pectoral fins, as well as brain ventricles, optic vesicles and retinal cells during early development (Monnich et al., 2011). Partial knockdown of esco2 in zebrafish morphants (organisms treated with morpholino antisense oligonucleotides to knockdown gene expression) leads to disorganized craniofacial cartilage and hypoplastic jaw elements as well as shortened, abnormally shaped pectoral fins. This is due to cells being blocked at the onset of mitosis, leading to increased cell death. esco2 morphant cells in mitosis have distorted, disorganized mitotic spindles, likely from the instability of the sister chromatids (Vega et al., 2005). Consistent with this study, stable esco2-/- mutants created with CRISPRCas9 also have smaller heads, missing pectoral fins, and increased apoptosis, particularly at the neural tube (Percival et al., 2015). This group observed that cells are trapped in mitosis. Indeed, after the nuclear envelope breaks down, chromosomes in esco2-/- mutants
scatter and are not captured on the metaphase plate, blocking mitosis from proceeding. This leads to aneuploidy and/or micronuclei and the cells are forced to undergo apoptosis. The craniofacial and limb defects, particularly the hypoplastic jaw and limbs, observed in patients from loss of ESCO2 are hypothesized to result from increased cell death, based on these zebrafish studies.

3.1.2 | Van der Woude syndrome

Van der Woude syndrome is an autosomal dominant disorder caused by variants in either IRF6 (MIM \#119300) (Burdick, Bixler, \& Puckett, 1985; Kondo et al., 2002) or GRHL3 (MIM \#606713) (Peyrard-Janvid et al., 2014). Patients present with orofacial clefting, lower lip pits and/or sinuses, hypodontia, and syndactyly.

IRF6 is a member of the interferon regulatory transcription factor family. In zebrafish larvae, it is expressed in the pharyngeal arches and in the epithelial cells of the mouth, esophagus, and pharynx, as well as the olfactory and otic placodes (2-72 hpf) (Ben et al., 2005). Expression of irf6 in the pectoral fin has not yet been shown; however, injection of a dominant-negative form of irf6 RNA into zebrafish embryos at the single-cell stage leads to shortened/loss of the pectoral fin as well as hypoplastic, disorganized craniofacial elements and a clefted ethmoid plate (Sabel et al., 2009). Dougherty et al. (2013) created stable, dominant-negative irf6 mutants driven by a sox10 promoter to limit mutant expression to NCCs. With time-lapse imaging, they show that chondrocytes at the median and lateral ethmoid plate fail to come together in mutants, creating a cleft (Dougherty et al., 2013). Similarly, Irf6-/- mutant mice have clefting in the secondary palate and a hypoplastic snout and jaw (Ingraham et al., 2006). Irf6 is thought to be involved in endothelin signaling during palate formation (Fakhouri et al., 2017). The clefting phenotypes observed in zebrafish and mice are consistent with what is seen in Van der Woude patients and demonstrate an important role for IRF6 in palatogenesis.
grhl3 is a transcription factor selectively expressed in the nonneural ectoderm as well as endoderm pouches surrounding the pharynx of developing zebrafish embryos. Knockdown of grhl3 causes severe hypoplasia of the palatoquadrate, ceratohyal, and Meckel's cartilage and loss of the ceratobranchial arches and pectoral fins (Dworkin et al., 2014). There is increased cell apoptosis in the pharyngeal arches with loss of grhl3. Using a micro-ChIP assay, Dworkin et al. (2014) found that Grhl3 directly binds to the promoter of edn1, a highly conserved gene required for lower jaw development (Clouthier et al., 1998; Miller et al., 2000). Expression of edn1 and its known downstream targets, hand 2 and $d l x 3$, are significantly reduced in the endoderm of grhl3 morphants. Importantly, injection of edn1 mRNA into grhl3 morphants rescues hand2 and dlx3 expression as well as the craniofacial and limb skeletons (Dworkin et al., 2014). It is thought that grhl3 is required for edn1 expression in the pharyngeal endoderm, which is then important for NCC growth and proliferation and palatogenesis.
irf6 and grhl3 are likely required for limb development in zebrafish, as shown by the loss of pectoral fins in different models,
but their roles remain unclear. During mammalian development, loss of either Irf6 or Grhl3 results in shortened forelimbs, ectrodactyly, or syndactyly (Ingraham et al., 2006; Kashgari et al., 2020). Irf6 is thought to be required for formation of the periderm, a single layer of epithelial cells surrounding the embryonic epidermis. In mice, Irf6 directly regulates transcription of Grhl3 (de la Garza et al., 2013), which was recently shown to be required for digit separation (Kashgari et al., 2020). It is unknown whether the interaction between irf6 and grhl3 during limb formation is conserved and if this accounts for the loss of pectoral fins seen in zebrafish.

3.1.3 | Ectrodactyly-ectodermal dysplasia-clefting syndrome 3 (EEC3)

Ectrodactyly-ectodermal dysplasia-clefting syndrome 3 (EEC3) (MIM \#604292) is an autosomal dominant disorder caused by mutations in TP63, a transcription factor and member of the TP53 family (Celli et al., 1999). EEC3 is characterized by orofacial clefting, ectrodactyly, and ectodermal dysplasia such as hypopigmented, scaly skin and malformed/decayed teeth (Penchaszadeh \& de Negrotti, 1976). TP63 is transcribed from two different promoters, creating two isoforms of the gene, Tap63 and $\Delta \mathrm{Np} 63$, which then act as an activator or repressor, respectively (Yang et al., 1998). Zebrafish studies have shown that knockdown of the dominant negative repressive isoform, $\Delta \mathrm{Np} 63$, results in loss of the pectoral fin and a decrease in proliferation in the epidermis (Bakkers et al., 2002; Lee \& Kimelman, 2002). p63 loss-offunction mutants (tp63-/-) created with CRISPR-Cas9 recapitulate this phenotype (Santos-Pereira et al., 2019). Unfortunately, the authors did not note any craniofacial defects in the tp63-/- mutants, and this is likely due to the larvae dying between 40-50 hours post fertilization (hpf). tp63-/- mutants have a significant decrease in expression of epidermal genes as well as genes relating to fin development. Additionally, Gene Ontology (GO) term enrichment analyses show a downregulation in genes relating to cell-matrix adhesion, cell adhesion, and skeletal muscle fiber development, genes which are likely to contribute to craniofacial and limb development. However, further studies exploring these functions have not yet been explored. Tp63-/- mutant mice display severe craniofacial and limb defects, including cleft lip and palate, hypoplastic upper and lower jaw, and limb truncations (Yang et al., 1999). Moreover, it has been shown in mice that Δ Np63 directly regulates the transcription of Dlx5/Dlx6 (Lo lacono et al., 2008) and Fgf8/Fgf4 (Kawata et al., 2017), which are all important for both limb and craniofacial development (Figures 2a and 3d). Therefore, it may be worth revisiting the zebrafish model to determine whether craniofacial defects are present in tp63-/mutants and if Tp63 is regulating these key developmental genes.

3.1.4 | Craniosynostosis and variable limb defects

Craniosynostosis is the second most common craniofacial anomaly with a prevalence of 1 in 2,500 live births (Boulet, Rasmussen, \&

Honein, 2008). Craniosynostosis is the premature fusion of skull bones at the sutures, or fibrous structures that join the bones, before the brain has fully formed. As a result, the skull is misshapen. During normal development, the sutures hold the skull in place while remaining flexible to allow proper brain growth. The anatomical structure and molecular mechanisms dictating formation of cranial sutures is conserved between humans and zebrafish, making them a useful model for studying craniosynostosis (Quarto \& Longaker, 2005). Here, we will discuss Saethre-Chotzen syndrome and syndromes associated with mutations in FGFR2.

3.1.5 | Saethre-Chotzen syndrome

Saethre-Chotzen syndrome is an autosomal dominant disorder featuring craniosynostosis, due to loss of the coronal suture, maxillary hypoplasia, a high forehead, wide-set eyes, ptosis (droopy eyelids), a broad nasal bridge, brachydactyly, syndactyly, and polydactyly in the feet (Chotzen, 1932; Saethre, 1931). It is associated with variants in FGFR2 (see below), FGFR3, and TWIST1 (MIM \#101400) (el Ghouzzi et al., 1997; Howard et al., 1997; Paznekas et al., 1998). Transcription factors Twist1a and Twist1b, the zebrafish orthologs of TWIST1, are both required for ectomesenchyme specification from NCCs (Das \& Crump, 2012). Knockdown of either gene with morpholinos results in minor skeletal defects, such as minor hypoplasia of the ventral mandibular and hyoid cartilages, but a double knockdown leads to an almost complete loss of the viscerocranium and loss of pectoral fins (Das \& Crump, 2012). Stable double twist1a-/-;twist1b-/- knockout mutants created using TALENs (transcription activator-like effector nucleases) have a milder phenotype than the morphants and present with hypoplasia in the Meckel's cartilage, palatoquadrate, and hyosymplectic cartilage (Teng et al., 2018). Using transgenic models and the GAL4:UAS system, Das and Crump (2012) show that Twist1 promotes ectomesenchyme cell fates (i.e., cartilage, bones, etc.) in cranial NCCs. These cells primarily make up the craniofacial skeleton.

One of the most distinct phenotypes of Saethre-Chotzen syndrome is the selective loss of the coronal suture, which separates the two parietal bones from the frontal bone in the skull. Teng et al. (2018) created viable, triple tcf12-/-;twist1a-/-;twist1b-/mutants that show mild craniofacial phenotypes at 5 dpf but adult mutants develop severe unilateral or bilateral coronal synostosis. Juvenile tcf12-/-;twist1b-/- double mutants assessed for mineralization (Calcein green staining), bone (Alizarin red staining), and livecell imaging of osteoblasts (sp7:EGFP transgenic line) all show accelerated growth of the frontal and parietal bones in mutants compared to wildtype. These bones grow diagonally toward one another, becoming aberrantly shaped and leading to premature fusion, which is consistent with the human phenotype. Premature fusion of the suture prevents bone enlargement and growth of the skull along the anterior/ posterior axis. Finally, using RNAscope in situ hybridization, a recently developed technique that uses probes to amplify target RNA in intact cells and tissues, they show that tcf12-/-;twist1b-/- mutants have reduced expression of skeletal stem cell markers, gli1, grem1a, and
prrx1a in the coronal sutures as well as a decrease in osteoprogenitors compared to the wildtype. This is true only in the coronal sutures, suggesting that there is a selective exhaustion of osteoprogenitors in this region and bone growth has ceased in the mutants (Teng et al., 2018). These studies demonstrate the importance of twist1 in craniofacial development.
twist1 also appears to be required for pectoral fin development, as suggested by the skeletal preparations for twist $1 a$ and twist $1 b$ morphants (Das \& Crump, 2012). However, the mechanism is not well understood. In mice, loss of Twist1 blocks forelimb growth. It is required for AER and ZPA maintenance by regulating Fgf and Shh signaling, respectively (O'Rourke, Soo, Behringer, Hui, \& Tam, 2002). Further studies in zebrafish are needed to determine if these interactions are conserved in the growing pectoral fin bud.

3.1.6 | FGFR2 syndromes

It is well-known that fibroblast growth factor (FGF) signaling is critical in many aspects of development. Humans have four tyrosine kinase FGF receptors (FGFR) than can bind to eighteen different secreted FGF proteins. Variants in FGFR2 specifically are known to be associated with several different craniofacial and limb syndromes, including Apert syndrome (MIM \#101200), bent bone dysplasia (MIM \#614592), Jackson Weiss syndrome (MIM \#123150), Pfeiffer syndrome (MIM \#101600), and Saethre-Chotzen syndrome (MIM \#101400) [reviewed in Wenger, Miller, \& Evans, 1998-(2020)]. Interestingly, each of these syndromes presents with craniosynostosis and either brachydactyly or syndactyly. A more detailed description of phenotypes for each syndrome can be found in Table 1. Mutations in other FGFRs and secreted FGF proteins are also known to lead to developmental disorders [reviewed in Wenger et al., 1998-(2020)].

In zebrafish embryos, fgfr2 is expressed in the pharyngeal endoderm and hindbrain between 24-72 hpf (Larbuisson et al., 2013) and in the cranial sutures at 6 weeks post fertilization (Topczewska et al., 2016). Treatment of embryos between 18-24 hpf with SU5402, an inhibitor of FGFRs, leads to loss of the pharyngeal arches (Walshe \& Mason, 2003). Injection of morpholinos against fgfr2 leads to hypoplastic skeletal structures, including the Meckel's cartilage and palatoquadrate, as well as shortened pectoral fins. Additionally, knockdown of both fgfr1a and fgfr2 produces an even more severe phenotype with loss of the ceratohyal, ceratobranchial arches, neurocranium, and pectoral fins (Larbuisson et al., 2013). In situ RNA hybridization experiments in single morphants show no changes in expression of sox9, dlx2a, or fli1, suggesting that cranial NCC migration into the pharyngeal arches is not affected by loss of fgfr2. However, there is decreased expression of barx1 and runx2b, suggesting Fgfr2 required for chondrocyte condensation and maturation (Larbuisson et al., 2013).

Leerberg et al. (2019) generated knockout zebrafish mutants for single fgfr genes using CRISPR-Cas9. Surprisingly, single homozygous mutants are viable and mRNA expression levels of non-mutated fgfr genes are not elevated, suggesting genetic redundancy. fgfr1a-/-;
fgfr1b-/-;fgfr2-/- triple mutants had the most severe phenotypes in the limb and craniofacial skeleton. Consistent with the morphant studies, these mutants had shortened or loss of pectoral fins. By in situ RNA hybridization, there was a significant decrease in fgf24, fgf8a, and $d l \times 2 a$, which are markers of limb outgrowth. The triple mutants also exhibited severe craniofacial phenotypes, including a loss of the ceratobranchial arches, ceratohyal, and hyosymplectic cartilage; a misshapen palatoquadrate; a downward facing Meckel's cartilage; and a clefted ethmoid plate. This is likely not due to issues with cranial NCC migration, but rather maintenance of the NCCs (Leerberg et al., 2019).

Fgf signaling is critical in both craniofacial and limb development. As shown in these studies and in mouse studies, Fgf signaling is required in the facial skeleton for early patterning, growth regulation, tooth growth, palatogenesis, and suture formation [reviewed in Nie, Luukko, and Kettunen (2006)]. In the limb, it is necessary for proximodistal outgrowth and regulating the anterior/posterior axis [reviewed in Mercader (2007). Therefore, mutations in FGFR genes can lead to syndromes that present with defects in either or both craniofacial and limb structures.

4 | SUMMARY

In this review, we have provided a brief overview of both craniofacial and limb development and discussed the relevance of using zebrafish as a model for studying both developmental mechanisms. We then reviewed studies that have used zebrafish to study human syndromes that present with both craniofacial and limb defects and attempted to understand why these defects often occur together. We speculate that there is a pleiotropic effect, in which a single gene affects more than one developmental process. Indeed, we have discussed how many signaling pathways, such as Fgf, Shh, Bmp, and Wnt signaling, are involved in both craniofacial and limb development. Disruptions to components of these pathways results in both craniofacial and limb defects. Moreover, some transcription factors, such as Twist1, Irf6, and Tp63 have been shown in mice to bind to and regulate genes that are critical for craniofacial and limb development. Additional studies are required to show that this is conserved in zebrafish as well. NCCs and their derivatives, namely melanoblasts and neurons, can be found in the limb mesenchyme, which may contribute to the similar gene regulatory networks (Erickson, 1985; Grim \& Christ, 1993). It has also been proposed that there is a deep homology between the craniofacial and limb skeletons. In cartilaginous fishes (Chondrichthyes), appendages grow out of the gill arches, a structure that later gives rise to part of the craniofacial skeleton. This led Carl Gegenbaur in 1878 to hypothesize that paired limbs/fins are evolved from the gill arches (Gegenbaur, 1878). This idea was recently supported by the work of Gillis and colleagues. In the little skate (L. erinacea), they demonstrated that chondrichthyan branchial rays and appendages both rely on a complex interplay between retinoic acid, Shh and Fgf8 signaling to drive endoskeleton outgrowth and patterning of both the gill arches and appendages (Gillis, Dahn, \& Shubin, 2009; Gillis \& Hall, 2016).

They argue that this is due to a deep homology of the structures. More recently, they have shown in the little skate that the first gill arch is composed of NCCs and the fins are made of mesoderm cells, as expected. Interestingly, the more posterior gill arches are composed of both NCCs and lateral mesoderm cells, suggesting that gills and fins develop from a common pool of cells that have the potential to develop into either structure (Sleight \& Gillis, 2020). This may explain why craniofacial and limb patterning are so similar. Despite the seemingly stark differences between humans and zebrafish, we have shown that zebrafish have emerged as a powerful tool to study human craniofacial and limb development.

ACKNOWLEDGMENTS

This work is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (1F31HD103368-01 to B.T.T. and 1R03HD096320-01A1 to K.B.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank members of the K.B.A. laboratory, particularly Lomeli C. Shull and Ezra S. Lencer; Jennyfer M. Mitchell; and Lee Niswander for critically reviewing the manuscript. We apologize to researchers whose work we were unable to include due to space limitations.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were generated in this study.

ORCID

Kristin B. Artinger (iD https://orcid.org/0000-0002-3003-6042

REFERENCES

Agarwal, P., Wylie, J. N., Galceran, J., Arkhitko, O., Li, C., Deng, C., ... Bruneau, B. G. (2003). Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development, 130(3), 623-633. https://doi.org/10.1242/dev.00191
Anthwal, N., Joshi, L., \& Tucker, A. S. (2012). Evolution of the mammalian middle ear and jaw: Adaptations and novel structures. Journal of Anatomy, 222(1), 147-160. https://doi.org/10.1111/j.1469-7580.2012. 01526.x

Bakkers, J., Hild, M., Kramer, C., Furutani-Seiki, M., \& Hammerschmidt, M. (2002). Zebrafish Δ Np63 is a direct target of bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Developmental Cell, 2(5), 617-627. https://doi.org/ 10.1016/S1534-5807(02)00163-6

Ben, J., Jabs, E. W., \& Chong, S. S. (2005). Genomic, cDNA and embryonic expression analysis of zebrafish IRF6, the gene mutated in the human oral clefting disorders Van der Woude and popliteal pterygium syndromes. Gene Expression Patterns, 5(5), 629-638. https://doi.org/10. 1016/j.modgep.2005.03.002
Boulet, S. L., Rasmussen, S. A., \& Honein, M. A. (2008). A population-based study of Craniosynostosis in metropolitan Atlanta, 1989-2003. American Journal of Human Genetics, 146A(8), 984-991. https://doi.org/10. 1002/ajmg.a. 32208

Braybrook, C., Lisgo, S., Doudney, K., Henderson, D., Marcano, A., Strachan, T., ... Lindsay, S. (2002). Craniofacial expression of human andmurine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients. Human Molecular Genetics, 11 (22), 2793-2804. https://doi.org/10.1093/hmg/11.22.2793

Burdick, A., Bixler, D., \& Puckett, C. (1985). Genetic analysis in families with Van Der Woude syndrome. Journal of Craniofacial Genetics and Developmental Biology, 5(2), 181-208.
Bush, J. O., \& Jiang, R. (2012). Palatogenesis: Morphogenetic and molecular mechanisms of secondary palate development. Development, 139 (2), 231-243. https://doi.org/10.1242/dev. 067082

Byvaltsev, V., Belykh, O., \& Belykh, E. (2012). New aspects in the epidemiology of craniofacial anomalies. World Neurosurgery, 77(5-6), 599-600. https://doi.org/10.1016/j.wneu.2012.03.004
Celli, J., Duijf, P., Hamel, B. C. J., Bamshad, M., Kramer, B., Smits, A. P. T., ... van Bokhoven, H. (1999). Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell, 99, 143-153. https://doi.org/10.1016/S0092-8674(00)81646-3
Chotzen, F. (1932). Eine eigenartige familiaere Entwicklungsstoerung (Akrocephalosyndaktylie, Dysostosis craniofacialis und Hypertelorismus). Mschr Kinderheilk, 55, 97-122.
Clouthier, D. E., Garcia, E., \& Schilling, T. F. (2010). Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. American Journal of Medical Genetics. Part A, 152A(12), 2962-2973. https://doi.org/10.1002/ajmg.a. 33568
Clouthier, D. E., Hosoda, K., Richardson, J. A., Williams, S. C., Yanagisawa, H., Kuwaki, Y., ... Yanagisawa, M. (1998). Cranial and cardiac neural crest defects in endothelin-a receptor-deficient mice. Development, 125, 813-824. https://doi.org/10.1242/dev. 00339
Connerney, J., Andreeva, V., Leshem, Y., Mercado, M. A., Dowell, K., Yang, X., ... Spicer, D. B. (2008). Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Developmental Biology, 318(2), 323-334. https://doi.org/10.1016/j. ydbio.2008.03.037
Das, A., \& Crump, J. G. (2012). Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genetics, 8(5), e1002710. https://doi.org/10.1371/journal.pgen. 1002710
Davis, C. A., Holmyard, D. P., Millen, K. J., \& Joyner, A. L. (1991). Examining pattern formation in mouse, chicken and frog embryos with an enspecific antiserum. Development, 111, 287-298. Retrieved from. https://dev.biologists.org/content/111/2/287.long
de la Garza, G., Schleiffarth, J. R., Dunnwald, M., Mankad, A., Weirather, J. L., Bonde, G., ... Cornell, R. A. (2013). Interferon regulatory factor 6 promotes differentiation of the periderm by activating expression of Grainyhead-like 3. The Journal of Investigative Dermatology, 133(1), 68-77. https://doi.org/10.1038/jid.2012.269
Dougherty, M., Kamel, G., Grimaldi, M., Gfrerer, L., Shubinets, V., Ethier, R., ... Liao, E. C. (2013). Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development, 140(1), 76-81. https://doi.org/10.1242/dev. 080473
Duncan, K. M., Mukherjee, K., Cornell, R. A., \& Liao, E. C. (2017). Zebrafish models of orofacial clefts. Developmental Dynamics, 246(11), 897-914. https://doi.org/10.1002/dvdy. 24566
Dworkin, S., Simkin, J., Darido, C., Partridge, D. D., Georgy, S. R., Caddy, J., ... Jane, S. M. (2014). Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton. Mechanisms of Development, 133, 77-90. https://doi.org/10.1016/j.mod.2014.05.005
Eberhart, J. K., He, X., Swartz, M. E., Yan, Y.-L., Song, H., Boling, T. C., ... Postlethwait, J. (2008). MicroRNA mirn140 modulates Pdgf signaling during palatogenesis. Nature Genetics, 40(3), 290-298. https://doi. org/10.1038/ng. 82
el Ghouzzi, V., Le Merrer, M., Perrin-Schmitt, F., Lajeunie, E., Benit, P., Renier, D., ... Bonaventure, J. (1997). Mutations of the TWIST gene in
the Saethre-Chotzen syndrome. Nature Genetics, 15(1), 42-46. https://doi.org/10.1038/ng0197-42
Erickson, C. (1985). Control of neural crest cell dispersion in the trunk of the avian embryo. Developmental Biology, 111, 138-157. https://doi. org/10.1016/0012-1606(85)90442-7
Fakhouri, W. D., Metwalli, K., Naji, A., Bakhiet, S., Quispe-Salcedo, A., Nitschke, L., ... Schutte, B. C. (2017). Intracellular genetic interaction between Irf6 and Twist1 during craniofacial Development. Scientific Reports, 7, 1-14. https://doi.org/10.1038/s41598-017-06310-z
Ferrante, M. I., Romio, L., Castro, S., Collins, J. E., Goulding, D. A., Stemple, D. L., ... Wilson, S. W. (2009). Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Human Molecular Genetics, 18(2), 289-303. https://doi.org/10.1093/ hmg/ddn356
Fuller, K., O'Connell, J. T., Gordon, J., Mauti, O., \& Eggenschwiler, J. (2014). Rab23 regulates nodal signaling in vertebrate left-right patterning independently of the hedgehog pathway. Developmental Biology, 391(2), 182-195. https://doi.org/10.1016/j.ydbio.2014. 04.012

Gardner, C. A., \& Barald, K. F. (1992). Expression of engrailed-like proteins in the chick embryo. Developmental Dynamics, 193(4), 370-388. https://doi.org/10.1002/aja. 1001930410
Gegenbaur, C. (1878). Elements of comparative anatomy. London, UK: Macmillan.
Gillis, J. A., Dahn, R. D., \& Shubin, N. H. (2009). Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5720-5724. https://doi.org/10.1073/pnas. 0810959106
Gillis, J. A., \& Hall, B. K. (2016). A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs. Development, 143(8), 1313-1317. https://doi.org/10.1242/dev. 133884
Global Registry and Database on Craniofacial Anomalies. (2001). Retrieved from Barau, Brazil. https://www.who.int/genomics/anomalies/en/ CFA-RegistryMeeting-2001.pdf.
Grandel, H., Lun, K., Rauch, G.-J., Rhinn, M., Piotrowski, T., Houart, C., ... Brand, M. (2002). Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anteriorposterior axis of the CNS and to induce a pectoral fin bud. Development, 129(12), 2851-2865. Retrieved from https://dev.biologists.org/ content/develop/129/12/2851.full.pdf
Grandel, H., \& Schulte-Merker, S. (1998). The development of the paired fins in the Zebrafish (Danio rerio). Mechanisms of Development, 79, 99-120. https://doi.org/10.1016/S0925-4773(98)00176-2
Grim, M., \& Christ, B. (1993). Neural crest cell migration into the limb bud of avian embryos. Progress in Clinical and Biological Research, 383A, 391-402. Retrieved from. https://pubmed.ncbi.nlm.nih.gov/7508130/
Hilliard, S., Yu, L., Gu, S., Zhang, Z., \& Chen, Y. (2005). Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. Journal of Anatomy, 207(5), 655-667. https://doi.org/10.1111/j. 1469-7580.2005.00474.x
Hirsch, N., Eshel, R., Bar Yaacov, R., Shahar, T., Shmulevich, F., Dahan, I., ... Birnbaum, R. Y. (2018). Unraveling the transcriptional regulation of TWIST1 in limb development. PLoS Genetics, 14(10), e1007738. https://doi.org/10.1371/journal.pgen. 1007738
Holmes, G. (2012). The role of vertebrate models in understanding Craniosynostosis. Child's Nervous System, 28(9), 1471-1481. https://doi.org/ 10.1007/s00381-012-1844-3

Howard, T., Paznekas, W., Green, E., Chiang, L., Ma, N., Ortiz de Luna, R., ... Jabs, E. W. (1997). Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nature Genetics, 15, 36-41. https://doi.org/10.1038/ng0197-36
Ingraham, C. R., Kinoshita, A., Kondo, S., Yang, B., Sajan, S., Trout, K. J., ... Schutte, B. C. (2006). Abnormal skin, limb and craniofacial
morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nature Genetics, 38(11), 1335-1340. https://doi.org/10.1083/ ng1903
Kague, E., Gallagher, M., Burke, S., Parsons, M., Franz-Odendaal, T., \& Fisher, S. (2012). Skeletogenic fate of Zebrafish cranial and trunk neural crest. PLoS One, 7(11), 1-13. https://doi.org/10.1371/journal.pone. 0047394
Kantaputra, P. N., \& Carlson, B. M. (2019). Genetic regulatory pathways of split-hand/foot malformation. Clinical Genetics, 95(1), 132-139. https://doi.org/10.1111/cge. 13434
Kashgari, G., Meinecke, L., Gordon, W., Ruiz, B., Yang, J., Ma, A. L., ... Andersen, B. (2020). Epithelial migration and non-adhesive periderm are required for digit separation during mammalian Development. Developmental Cell, 52(6), 764-778. https://doi.org/10.1016/j.devcel. 2020.01.032

Kawata, M., Taniguchi, Y., Mori, D., Yano, F., Ohba, S., Chung, U.-I., ... Saito, T. (2017). Different regulation of limb development by p63 transcript variants. PLoS One, 12(3), 1-19. https://doi.org/10.1371/ journal.pone. 0174122
Kawauchi, S., Santos, R., Muto, A., Lopez-Burks, M. E., Schilling, T. F., Lander, A. D., \& Calof, A. L. (2016). Using mouse and zebrafish models to understand the etiology of developmental defects in Cornelia de Lange syndrome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 172(2), 138-145. https://doi.org/10.1002/ajmg.c. 31484
Kimmel, C. B., Ullmann, B., Walker, M., Miller, C. T., \& Crump, J. G. (2003). Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish. Development, 130(7), 1339-1351. https://doi.org/10.1242/ dev. 00338
Kondo, S., Schutte, B. C., Richardson, R. J., Bjork, B. C., Knight, A. S., Watanabe, Y., ... Murray, J. C. (2002). Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nature Genetics, 32(2), 285-289. https://doi.org/10.1038/ng985
Kurihara, Y., H, K., Suzuki, H., Kodama, T., Maemura, K., Nagai, R., ... Yazaki, Y. (1994). Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature, 368, 703-710.
Larbuisson, A., Dalcq, J., Martial, J. A., \& Muller, M. (2013). Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation, 86(4-5), 192-206. https://doi.org/10.1016/j.diff.2013.07.006
Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A., \& Tabin, C. (1994). Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell, 79(6), 993-1003. https://doi.org/10.1016/0092-8674(94) 90030-2
Lee, H., \& Kimelman, D. (2002). A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Developmental Cell, 2, 607-616. https://doi.org/10.1016/S1534-5807(02)00166-1
Leerberg, D. M., Hopton, R. E., \& Draper, B. W. (2019). Fibroblast growth factor receptors function redundantly during zebrafish embryonic development. Genetics, 212(4), 1301-1319. https://doi.org/10.1534/ genetics.119.302345
Leong, I. U., Skinner, J. R., Shelling, A. N., \& Love, D. R. (2013). Expression of a mutant kcnj2 gene transcript in zebrafish. ISRN Molecular Biology, 2013, 324839. https://doi.org/10.1155/2013/324839
Letelier, J., de la Calle-Mustienes, E., Pieretti, J., Naranjo, S., Maeso, I., Nakamura, T., ... Gomez-Skarmeta, J. L. (2018). A conserved Shh cisregulatory module highlights a common developmental origin of unpaired and paired fins. Nature Genetics, 50(4), 504-509. https://doi. org/10.1038/s41588-018-0080-5
Lo lacono, N., Mantero, S., Chiarelli, A., Garcia, E., Mills, A. A., Morasso, M. I., ... Merlo, G. R. (2008). Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development, 135(7), 1377-1388. https://doi.org/10.1242/ dev. 011759

Loomis, C. A., Kimmel, R. A., Tong, C.-X., Michaud, J., \& Joyner, A. L. (1998). Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development, 125, 1137-1148. Retrieved from. https://dev.biologists. org/content/125/6/1137.article-info
Lorent, K., Yeo, S. Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R. P., \& Pack, M. (2004). Inhibition of jagged-mediated notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development, 131(22), 5753-5766. https://doi.org/10.1242/dev. 01411
Mercader, N. (2007). Early steps of paired fin development in zebrafish compared with tetrapod limb development. Development, Growth \& Differentiation, 49(6), 421-437. https://doi.org/10.1111/j.1440-169X. 2007.00942.x

Merrill, A. E., Bochukova, E. G., Brugger, S. M., Ishii, M., Pilz, D. T., Wall, S. A., ... Maxson, R. E., Jr. (2006). Cell mixing at a neural crestmesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Human Molecular Genetics, 15(8), 1319-1328. https://doi.org/10.1093/hmg/ddl052
Miles, L. B., Darido, C., Kaslin, J., Heath, J. K., Jane, S. M., \& Dworkin, S. (2017). Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension. Scientific Reports, 7(1), 17607. https://doi.org/10.1038/s41598-017-17898-7
Miller, C. T., Schilling, T. F., Lee, K., Parker, J., \& Kimmel, C. B. (2000). Sucker encodes a zebrafish endothelin-1 required for ventral pharyngeal arch development. Development, 127(17), 3815-3828. Retrieved from. https://dev.biologists.org/content/develop/127/17/ 3815.full.pdf

Miller, C. T., Swartz, M. E., Khuu, P. A., Walker, M. B., Eberhart, J. K., \& Kimmel, C. B. (2007). mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish. Developmental Biology, 308(1), 144-157. https://doi.org/10.1016/j.ydbio.2007.05.018
Miller, C. T., Yelon, D., Stainier, D. Y. R., \& Kimmel, C. B. (2003). Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development, 130, 1353-1365. https://doi.org/ 10.1242/dev. 00339

Miyashita, T., Baddam, P., Smeeton, J., Oel, A. P., Natarajan, N., Gordon, B., Palmer A. R., Crump J. G., Graf D. Allison, W. T. (2020). nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish. The Journal of Experimental Biology, 223(Pt 15). https://doi.org/10.1242/jeb.216945, jeb216945.
Monnich, M., Kuriger, Z., Print, C. G., \& Horsfield, J. A. (2011). A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One, 6(5), e20051. https://doi.org/10.1371/journal.pone. 0020051
Mork, L., \& Crump, G. (2015). Zebrafish craniofacial Development: A window into early patterning. Current Topics in Developmental Biology, 115, 235-269. https://doi.org/10.1016/bs.ctdb.2015.07.001
Morriss-Kay, G. M. (2001). Derivation of the mammalian skull vault. Journal of Anatomy, 199, 143-151. https://doi.org/10.1046/j.1469-7580. 2001.19910143.x

Ng, J. K., Kawakami, Y., Buscher, D., Raya, A., Itoh, T., Koth, C. M., ... Izpisua Belmonte, J. C. (2002). The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development, 129, 5161-5170. Retrieved from. http://dev.biologists.org/content/129/ 22/5161
Nie, X., Luukko, K., \& Kettunen, P. (2006). FGF signaling in craniofacial development and developmental disorders. Oral Diseases, 12(2), 102-111. https://doi.org/10.1111/j.1601-0825.2005.01176.x
Niswander, L., Jeffrey, S., Martin, G. R., \& Tickle, C. (1994). A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature, 371, 609-612. https://doi.org/10.1038/371609a0

Niswander, L., \& Martin, G. R. (1993). FGF-4 and BMP-2 have opposite effects on limb growth. Nature, 361(6407), 68-71. https://doi.org/10. 1038/361068a0
Niswander, L., Tickle, C., Vogel, A., Booth, I., \& Martin, G. R. (1993). FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell, 75(3), 579-587. https://doi.org/10.1016/ 0092-8674(93)90391-3
Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, T., ... Noji, S. (1997). The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development, 124, 2235-2244. Retrieved from. http://dev.biologists.org/content/124/11/2235. article-info
O'Rourke, M., Soo, K., Behringer, R. R., Hui, C.-C., \& Tam, P. (2002). Twist plays an essential role in FGF and SHH signal transduction during mouse development. Developmental Biology, 248(1), 143-156. https:// doi.org/10.1006/dbio.2002.0730
Pajni-Underwood, S., Wilson, C. P., Elder, C., Mishina, Y., \& Lewandoski, M. (2007). BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. Development, 134 (12), 2359-2368. https://doi.org/10.1242/dev. 001677

Panthaki, Z. J., \& Armstrong, M. B. (2003). Hand abnormalities associated with craniofacial syndromes. Journal of Craniofacial Surgery, 14(5), 709-712. https://doi.org/10.1097/00001665-200309000-00020
Parr, B. A., \& McMahon, A. P. (1995). Dorsalizing signal Wnt-7a required for normal polarity of D-V and a-P axes of mouse limb. Nature, 374, 350-353. https://doi.org/10.1038/374350a0
Paznekas, W., Cunningham, M. L., Howard, T., Korf, B., Lipson, M., Grix, A., ... Jabs, E. W. (1998). Genetic heterogeneity of Saethre-Chotzen syndrome, due to TWIST and FGFR mutations. AJHG, 62(6), 1370-1380. https://doi.org/10.1086/301855
Penchaszadeh, V. B., \& de Negrotti, T. C. (1976). Ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome: Dominant inheritance and variable expression. Journal of Medical Genetics, 13(4), 381-384. https://doi. org/10.1136/jmg.13.4.281
Percival, S. M., Thomas, H. R., Amsterdam, A., Carroll, A. J., Lees, J. A., Yost, H. J., \& Parant, J. M. (2015). Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Disease Models \& Mechanisms, 8(8), 941-955. https://doi.org/10.1242/dmm. 019059
Person, A. D., Beiraghi, S., Sieben, C. M., Hermanson, S., Neumann, A. N., Robu, M. E., ... Lohr, J. L. (2010). WNT5A mutations in patients with autosomal dominant Robinow syndrome. Developmental Dynamics, 239(1), 327-337. https://doi.org/10.1002/dvdy. 22156
Peters, H., Neubuser, A., Kratochwil, K., \& Balling, R. (1998). Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes \& Development, 12(17), 2735-2747. https://doi.org/10.1101/gad.12.17.2735
Petit, F., Sears, K. E., \& Ahituv, N. (2017). Limb development: A paradigm of gene regulation. Nature, 18, 245-258. https://doi.org/10.1038/nrg. 2016.167

Peyrard-Janvid, M., Leslie, E., Kousa, Y., Smith, T., Dunnwald, M., Magnusson, M., ... Schutte, B. (2014). Dominant mutations in GRHL3 cause Van Der Woude syndrome and disrupt Oral periderm Development. American Journal of Human Genetics, 94(1), 23-32. https://doi. org/10.1016/j.ajhg.2013.11.009
Pistocchi, A., Fazio, G., Cereda, A., Ferrari, L., Bettini, L. R., Messina, G., ... Massa, V. (2013). Cornelia de Lange syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death \& Disease, 4, e866. https://doi.org/10.1038/cddis.2013.371
Pizette, S., \& Niswander, L. (1999). BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development, 126, 883-894. Retrieved from. https://dev.biologists.org/content/126/5/ 883.long

Quarto, N., \& Longaker, M. T. (2005). The zebrafish (Danio rerio): A model system for cranial suture patterning. Cells, Tissues, Organs, 181, 109-118. https://doi.org/10.1159/000091100
Riddle, R. D., Johnson, R. L., Laufer, E., \& Tabin, C. (1993). Sonic hedgehog mediates the polarizing activity of the ZPA. Cell, 75, 1401-1416. https://doi.org/10.1016/0092-8674(93)90626-2
Roberts, J. B. (1919). A child with double cleft of lip and palate, protrusion of the intermaxillary portion of the upper jaw and imperfect development of the bones of the four extremities. Annals of surgery, 70, 252-234.
Rolef Ben-Shahar, T., Heeger, S., Lehane, C., East, P., Flynn, H., Skehel, M., \& Uhlmann, F. (2008). Eco-1 dependent cohesin acetylation during establishment of sister chromatid cohesion. Science, 321 (5888), 563-566. https://doi.org/10.1126/science. 1157774

Sabel, J. L., d'Alencon, C., O'Brien, E. K., Van Otterloo, E., Lutz, K., Cuykendall, T. N., ... Cornell, R. A. (2009). Maternal interferon regulatory factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Developmental Biology, 325 (1), 249-262. https://doi.org/10.1016/j.ydbio.2008.10.031

Saethre, H. (1931). Ein Beitrag zum Turmschädelproblem, (Pathogenese, Erblichkeit und Symptomatologie). Deutsche Zeitschrift f. Nervenheilkunde, 117, 533-555. https://doi.org/10.1007/BF01673869
Santagati, F., \& Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. Nature Reviews. Neuroscience, 4(10), 806-818. https://doi.org/10.1038/nrn1221
Santos-Pereira, J. M., Gallardo-Fuentes, L., Neto, A., Acemel, R. D., \& Tena, J. J. (2019). Pioneer and repressive functions of p63 during zebrafish embryonic ectoderm specification. Nature Communications, 10(1), 3049. https://doi.org/10.1038/s41467-019-11121-z
Saunders, J. W. (1948). The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. The Journal of Experimental Zoology, 108, 363-404. https://doi.org/10.1002/jez. 1401080304
Saunders, J. W., \& Gasseling, M. T. (1968). In R. Fleischmajer \& R. F. Billingham (Eds.), Ectodermal-mesenchymal interactions in the origin of limb symmetry. Baltimore: Williams \& Wilkins.
Schilling, T. F., \& Kimmel, C. B. (1997). Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development, 124, 2945-2960. Retrieved from. https://dev.biologists.org/content/124/ 15/2945
Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., ... Kato, S. (1999). Fgf10 is essential for limb and lung formation. Nature Genetics, 21, 138-141. https://doi.org/10.1038/5096
Selever, J., Liu, W., Lu, M. F., Behringer, R. R., \& Martin, J. F. (2004). Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Developmental Biology, 276(2), 268-279. https://doi. org/10.1016/j.ydbio.2004.08.024
Serrano, M., Demarest, B. L., Tone-Pah-Hote, T., Tristani-Firouzi, M., \& Yost, J. (2019). Inhibition of notch signaling rescues cardiovascular development in kabuki syndrome. PLoS Biology, 17(9), e3000087. https://doi.org/10.1371/journal.pbio. 3000087
Sleight, V. A., \& Gillis, J. A. (2020). Embryonic origin and serial homology of gill arches and paired fins in the skate, Leucoraja erinacea. eLife, 9 (e60635), 1-14. https://doi.org/10.7554/eLife. 60635
Smith, J. D., Hing, A. V., Clarke, C. M., Johnson, N. M., Perez, F. A., Park, S. S., ... Cunningham, M. L. (2014). Exome sequencing identifies a recurrent de novo ZSWIM6 mutation associated with acromelic frontonasal dysostosis. American Journal of Human Genetics, 95(2), 235-240. https://doi.org/10.1016/j.ajhg.2014.07.008
Sun, X., Mariani, F. V., \& Martin, G. R. (2002). Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature, 418, 501-508. https://doi.org/10.1038/nature00902
Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J., \& Eberhart, J. K. (2011). Examination of a palatogenic gene program in zebrafish.

Developmental Dynamics, 240(9), 2204-2220. https://doi.org/10. 1002/dvdy. 22713
Szabo-Rogers, H. L., Smithers, L. E., Yakob, W., \& Liu, K. J. (2010). New directions in craniofacial morphogenesis. Developmental Biology, 341 (1), 84-94. https://doi.org/10.1016/j.ydbio.2009.11.021

Teng, C. S., Ting, M. C., Farmer, D. T., Brockop, M., Maxson, R. E., \& Crump, J. G. (2018). Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. eLife, 7(e37024), 1-23. https://doi.org/10.7554/eLife.37024.
Topczewska, J. M., Shoela, R. A., Tomaszewski, J. P., Mirmira, R. B., \& Gosain, A. K. (2016). The morphogenesis of cranial sutures in zebrafish. PLoS One, 11(11), e0165775. https://doi.org/10.1371/ journal.pone. 0165775
Twigg, S. R., Lloyd, D., Jenkins, D., Elcioglu, N. E., Cooper, C. D., AlSannaa, N., ... Wilkie, A. O. (2012). Mutations in multidomain protein MEGF8 identify a carpenter syndrome subtype associated with defective lateralization. American Journal of Human Genetics, 91(5), 897-905. https://doi.org/10.1016/j.ajhg.2012.08.027
Twigg, S. R., \& Wilkie, A. O. (2015). New insights into craniofacial malformations. Human Molecular Genetics, 24(R1), R50-R59. https://doi. org/10.1093/hmg/ddv228
Tyurina, O. V., Guner, B., Popova, E., Feng, J., Schier, A. F., Kohtz, J. D., \& Karlstrom, R. O. (2005). Zebrafish Gli3 functions as both an activator and a repressor in hedgehog signaling. Developmental Biology, 277(2), 537-556. https://doi.org/10.1016/j.ydbio.2004.10.003
Update on Overall Prevalence of Major Birth Defects. (2008). Retrieved from Atlanta, Georgia. https://www.cdc.gov/mmwr/preview/ mmwrhtml/mm5701a2.htm.
van Eeden, F. J. M., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., ... Nüsslein-Volhard, C. (1996). Genetic analysis of fin formation in the zebrafish, Danio rerio. Development, 123, 255-262. Retrieved from https://dev.biologists.org/content/develop/123/1/ 255.full.pdf.

Van Laarhoven, P. M., Neitzel, L. R., Quintana, A. M., Geiger, E. A., Zackai, E. H., Clouthier, D. E., ... Shaikh, T. H. (2015). Kabuki syndrome genes KMT2D and KDM6A: Functional analyses demonstrate critical roles in craniofacial, heart and brain development. Human Molecular Genetics, 24(15), 4443-4453. https://doi.org/10.1093/hmg/ddv180
Vasluian, E., van der Sluis, C. K., van Essen, A. J., Bergman, J. E. H., Dijkstra, P. U., Reinders-Messelink, H. A., \& de Walle, H. E. K. (2013). Birth prevalence for congenital limb defects in the northern Netherlands: A 30-year population-based study. BMC Musculoskeletal Disorders, 14(323), 1-14. https://doi.org/10.1186/1471-2474-14-323
Vega, H., Waisfisz, Q., Gordillo, M., Sakai, N., Yanagihara, I., Yamada, M., ... Joenje, H. (2005). Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nature Genetics, 37, 468-470. https://doi.org/10.1038/ng1548
Wada, N., Javidan, Y., Nelson, S., Carney, T. J., Kelsh, R. N., \& Schilling, T. F. (2005). Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development, 132, 3977-3988. https://doi.org/10. 1242/dev. 01943
Walshe, J., \& Mason, I. (2003). Fgf signaling is required for formation of cartilage in the head. Developmental Biology, 264, 522-536. https:// doi.org/10.1016/j.ydbio.2003.08.010
Weaver, K. N., Watt, K. E., Hufnagel, R. B., Navajas Acedo, J., Linscott, L. L., Sund, K. L., ... Saal, H. M. (2015). Acrofacial dysostosis, cincinnati type, a mandibulofacial dysostosis syndrome with limb anomalies, is caused by POLR1A dysfunction. American Journal of Human Genetics, 96(5), 765-774. https://doi.org/10.1016/j.ajhg.2015. 03.011

Wenger, T., Miller, D., \& Evans, K. (1998-2020). FGFR Craniosynostosis syndromes overview. In M. Adam, H. Ardinger, R. Pagon, \& S. Wallace
(Eds.), GeneReviews ${ }^{\circledR}$ [Internet]. Seattle, WA: GeneReviews. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK1455/
Wilcox, W. R., Coulter, C. P., \& Schmitz, M. L. (2015). Congenital limb deficiency disorders. Clinics in Perinatology, 42(2), 281-300, viii. https:// doi.org/10.1016/j.clp.2015.02.004
Wilson, J., \& Tucker, A. S. (2004). Fgf and bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Developmental Biology, 266, 138-150. https://doi.org/10.1016/j.ydbio.2003.10.012
Wu, X., \& Gu, Y. (2019). Signaling mechanisms underlying genetic pathophysiology of craniosynostosis. International Journal of Biological Sciences, 15(2), 298-311. https://doi.org/10.7150/ijbs. 29183
Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M., Dötsch, V., ... McKeon, F. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell, 2(3), 305-316. https://doi.org/10.1016/ S1097-2765(00)80275-0
Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R., ... McKeon, F. (1999). p63 is essential for regenerative proliferation in
limb, craniofacial, and epithelial development. Nature, 398, 714-718. https://doi.org/10.1038/19539
Yano, T., \& Tamura, K. (2013). The making of differences between fins and limbs. Journal of Anatomy, 222(1), 100-113. https://doi.org/10.1111/j. 1469-7580.2012.01491.x
Zuniga, A. (2015). Next generation limb development and evolution: Old questions, new perspectives. Development, 142(22), 3810-3820. https://doi.org/10.1242/dev. 125757
Zuniga, E., Stellabotte, F., \& Crump, J. G. (2010). Jagged-notch signaling ensures dorsal skeletal identity in the vertebrate face. Development, 137(11), 1843-1852. https://doi.org/10.1242/dev. 049056

How to cite this article: Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. genesis. 2021;1-19. https:// doi.org/10.1002/dvg. 23407

[^0]: IRF6 variants are associated with both popliteal pterygium syndrome and Van der Woude syndrome.

